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A.1 Recovering Marginal Costs

This section describes the methodology for calculating marginal costs, following Hall (1986);
De Loecker and Warzynski (2012). Let Qit denote the physical output Q of plant i in year
t. Output is a function of variable inputs Vit (i.e., those not subject to adjustment costs)
like materials and energy; dynamic inputs Dit like capital or sticky labor, which are subject
to adjustment costs; and plant-specific productivity Ωit: Qit = Qit(Vit, Dit,Ωit). We assume
a firm minimizes the cost of the variable input(s), conditioning on the dynamic inputs. The
firm solves the following Lagrangian:

L(Vit, Dit, λit) = P V
it Vit +RitKit + λit[Qit −Qit(Vit, Dit,Ωit)]

Here P V
it is the price of variable inputs, Rit is the price of dynamic inputs, and λit is the

Lagrange multiplier.
The firm’s first-order condition for a variable input like materials is

∂L
∂Vit

= P V
it − λit

∂Qit(·)
∂Vit

Rearranging terms for an optimum where ∂L/∂Vit = 0 and multiplying the right-hand side
by VitQit/VitQit and both sides by Pit shows how we recover markups:

Pit

λit
=

[
∂Qit(·)
∂Vit

Vit
Qit

] [
P V
it Vit
PitQit

]−1

(1)

The left-hand side of this equation is the multiplicative markup µit, which equals prices
divided the Lagrange multiplier. The Lagrange multiplier represents marginal costs, since
it reflects the costs of relaxing the output constraint. The right-hand side is the product of
two bracketed terms; we construct empirical analogues to both. The first is the elasticity of
output with respect to a variable input, or the “output elasticity.” We estimate the output
elasticity from production functions, described in the next subsection. The second bracketed
term is the cost of the variable input divided by the firm’s revenue, or the “revenue share.”
Our data report the revenue share of each input.

We can then compute a time-varying, plant-level markup by using the estimated output
elasticity of a variable input and the revenue share of that input. Since we observe plant-level
unit prices, we then recover marginal costs from the accounting identity that price equals
markups times marginal costs: MCit = Pit/µit where MCit is the marginal cost of plant i in
year t, and µit is the (multiplicative) markup.

A.2 Recovering Output Elasticities from Production Functions

The previous subsection showed that estimating markups requires the output elasticity of a
variable plant-level input like materials. We estimate this output elasticity by using proxy
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methods to estimate production functions (Olley and Pakes, 1996; Levinsohn and Petrin,
2003; Ackerberg, Caves, and Frazer, 2015). We focus on production functions with a scalar,
Hicks-neutral productivity term and estimate elasticities separately by industry, assuming
common technology across firms and over time within an industry.1 We show a Cobb-
Douglas specification here to simplify exposition, though our results use a more flexible
translog, gross-output production function:2

yit = βkkit + βllit + βmmit + ωit + εit (2)

Throughout the paper, lowercase represents variables in logs. Here yit represents a plant’s
output quantity. We use output quantity rather than revenues here to avoid well-known
bias in revenue-based productivity estimates.3 Firms use three inputs: capital, labor, and
materials (kit, lit, and mit). Materials includes energy inputs in addition to other intermedi-
ate inputs used for production. The parameter vector which we estimate, β ≡ (βk, βl, βm),
contains the output elasticities of these three inputs. The term ωit represents productiv-
ity, which is known to the firm when making static input decisions but unobserved to the
econometrician. The residual εit includes measurement error and unanticipated shocks to
output.

Ordinary least squares estimates of equation (2) may suffer from omitted variables bias
due to the unobserved productivity term ωit (Marschak and Andrews, 1944). A firm observes
its productivity, so input choices kit, lit, and mit may depend on it, but productivity directly
affects output, and data do not report it.

To address the possible omitted variable bias associated with OLS estimates of equa-
tion (2), we use control-function or proxy methods to control for the unobserved and omitted
productivity term. Consider a general demand function for materials:4 mit = mt(kit, lit, ωit).

1Output elasticities could in principle differ by industry and time period. Such flexible output elasticities
are difficult to estimate with our data, however, since we have few years of data, require one lag to construct
instruments, and have few observations for most industries.

2Translog coefficients are the same across firms within an industry. Markups and output elasticities,
however, differ across firms within an industry, because input demands differ across firms. This is an
advantage of translog over Cobb-Douglas production functions, which would have the same output elasticity
across firms within an industry. Under Cobb-Douglas, all variation in markups across firms within an
industry would come from revenue shares.

3Output quantity addresses the distinction between revenue and physical total factor productivity (Foster,
Haltiwanger, and Syverson, 2008). Unobserved variation in input prices may also bias production function
coefficients (De Loecker, Goldberg, Khandelwal, and Pavcnik, 2016). The homogeneity of our products
potentially gives less scope for input price variation and associated bias (De Loecker and Goldberg, 2014).
We have explored specifications that attempt to control for any remaining input price variation using a
polynomial in the output price, and results are largely similar. Our dataset reports expenditures on inputs
though not input quantities; we are unaware of any production function estimates in any setting using input
quantity data for all inputs rather than price-deflated input expenditures.

4We focus on materials as a variable input into the production function, where materials include both
purchased intermediates as well as energy input expenditures. In theory, we could estimate a separate output
elasticity for energy in the production function. In practice, adding a fourth input into a translog production
function substantially increases the number of parameters to be estimated. With relatively small sample sizes
and relatively few degrees of freedom, output elasticities become more sensitive and less robust. Moreover,
many indirect energy input costs are embodied in material expenditures through feedstock purchases for
example.

2



Assuming that mt(·) is strictly monotonic in inputs, we invert this input demand equation
to solve for productivity as a function of the observable inputs:

ωit = m−1
t (mit, kit, lit)

This inversion provides a control function for productivity.5

We apply this approach in two steps, following Ackerberg, Caves, and Frazer (2015). The
first step regresses plant output yit on a function φt(·) of observed inputs. This first step is
designed to purge output data of measurement error and unanticipated shocks to output εit:

yit = φt(kit, lit,mit) + εit

We approximate φt(·) using a polynomial expansion. We use estimates from this first step
to calculate εit from

ε̂it = yit − φ̂t(kit, lit,mit) (3)

where φ̂ contains the fitted values from this first step, and ε̂it are the residuals from this
regression. Since εit contains measurement error and unanticipated shocks to production, we
can use it to obtain a measure of output which is purged of both. After this first step, the only
missing information needed to know the output elasticity vector β is the productivity vector
ωit. Given any candidate elasticity vector β̃, we can estimate productivity by manipulating
equations (2) and (3) to get

ωit(β̃) = φ̂it − β̃kkit − β̃llit − β̃mmit (4)

The second step selects the coefficient vector that best fits the data by relying on the law
of motion for productivity. We follow Ackerberg, Caves, and Frazer (2015) and assume that
productivity follows a first-order Markov process.6 We define productivity shocks ξit as the
difference between productivity and the expectation of last period’s productivity given last
period’s information set Iit−1:

ξit = ωit − E[ωit|Iit−1]

5Inverting materials demand to recover productivity requires a one-to-one mapping between plant-level
productivity and materials. This assumption fails if unobserved plant-level variables besides productivity
drive changes in materials or if there is measurement error in materials. Alternative production function
estimators, such as the dynamic panel methods developed by Blundell and Bond (2000) are not appropriate
in our setting since we have few time periods to construct differences and lags. Some evidence suggests
these may not be first-order concerns. Syverson (2004) finds robustness among producer TFP measures
(and hence output elasticities) for one of our industries, ready-mixed concrete, with a specification incorpo-
rating idiosyncratic demand shocks. Van Biesebroeck (2007) also finds high TFP correlations across various
measurement alternatives. Given the strong assumptions needed to estimate output elasticities, however,
subsequent sections explore alternative methods to characterize incidence in the absence of information on
output elasticities or markups and marginal costs.

6We use the AR(1) process to derive a plausibly exogenous productivity shock ξit along the lines of
Ackerberg, Caves, and Frazer (2015). We have also allowed for the potential of additional lagged decision
variables to affect current productivity outcomes (in expectation) in order to accommodate the concerns
raised by De Loecker (2011) pertaining to the exogeneity of productivity process. For example, we have
allowed productivity to depend on export status and the nonrandom exit of firms (De Loecker, 2011; Olley and
Pakes, 1996). In practice, our output elasticity estimates are not particularly sensitive to these modifications.
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where E is the expectation operator. Equivalently, ξit represents the component of current
productivity which was unexpected at time t− 1.

The second step estimates the production function coefficients using the assumption that
this productivity innovation must be orthogonal to a set of current and lagged input demands
dit. We summarize these conditions as

E[ξit(β)dit] = 0 (5)

With the translog production function we use for the empirical implementation, the vector
dit is

dit = {lit,mit−1, kit, l
2
it,m

2
it−1, k

2
it, litmit−1, litkit,mit−1kit}

These moments above are similar to those suggested by Ackerberg, Caves, and Frazer (2015).
They exploit the fact that capital and labor have adjustment costs, and that lagged capital
and labor should not be correlated with the current productivity innovation. We use lagged
rather than current materials to identify the materials coefficients since current material
expenditures may react to contemporaneous productivity innovations. For lagged materials
to be a valid instrument for current materials, input prices must to be correlated over time.

Finally, we use generalized method of moments to choose the production function coeffi-
cients β which minimize the moment conditions in equation (5). With translog production
functions, the coefficients β combined with input data give the output elasticities θ̂:7

θ̂it = θ(β̂, lit,mit, kit)

These output elasticities vary by plant and by year. This leads to plant-year variation in
markups (i.e., different markups for each plant within an industry-year) that is driven by
both changes in the plant-level revenue share for the variable input (e.g. materials) and
changes in the mix of inputs used for production.

B Appendix Figures and Tables

7The estimated output elasticity for materials, for example, is θ̂it = β̂m + 2β̂mmmit + β̂lmlit + β̂kmkit +
β̂lmklitkit.
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Table B1: Pass-Through Rate of Marginal Costs into Unit Prices, by Product: Fuel-Mix
Instrumental Variables

(1) (2) (3) (4) (5) (6)
Boxes Bread Cement Concrete Gasoline Plywood

Fuel Shift-Share Instrument (with Year FE)

Marginal Costs 0.946∗∗∗ 0.214 0.706∗∗∗ 0.743∗∗∗ 0.491∗∗∗ 0.825∗∗∗

(0.031) (0.443) (0.067) (0.098) (0.139) (0.076)

N 1414 248 229 3369 284 139
First Stage F-Statistic 12.60 4.25 18.50 15.22 4.73 77.18

Year FE X X X X X X
Plant FE X X X X X X
State-Trends FE X X X X X X

Notes: This table presents regression coefficients from 7 separate regressions; one per column. Each column

represents a separate sample, where the sample is indicated in the column headings. An observation is a

plant-year. The dependent variable is the plant-level unit-price, and the independent variable is plant-level

marginal cost. Marginal cost is instrumented by the interactions between national fuel prices for industrial

production and 2-year lagged industry energy expenditure shares. All regressions include plant fixed effects,

year fixed effects, and state-specific trends. Standard errors are in parentheses and are clustered by state.

Regressions are weighted by Census sampling weights. ***,**,* denotes statistical significance at the 1, 5,

and 10 percent levels, respectively. See text for details. Source: Census and Annual Survey of Manufacturers,

MECS, EIA-SEDS.
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Table B2: Pass-Through Rate of Marginal Costs into Unit Prices, in Levels, by Product:
Instrumental Variables

(1) (2) (3) (4) (5) (6)
Boxes Bread Cement Concrete Gasoline Plywood

Panel A: Baseline - Electricity Price Instrument

Marginal Costs 1.581∗∗∗ 0.029 1.585∗∗∗ 0.759∗∗∗ 0.461∗∗∗ 0.625∗∗∗

(0.052) (0.157) (0.219) (0.061) (0.132) (0.225)

N 1414 308 293 3369 345 163
First Stage F-Statistic 44.59 4.00 80.03 12.49 7.15 17.04

Plant FE X X X X X X
Year FE X X X X X X
State-Trends FE X X X X X X

Panel B: Region-Year FE - Electricity Price Instrument

Marginal Costs 1.597∗∗∗ 0.019 1.631∗∗∗ 0.717∗∗∗ 0.302∗∗ 0.755∗∗∗

(0.111) (0.096) (0.192) (0.064) (0.123) (0.160)

N 1414 308 293 3369 345 163
First Stage F-Statistic 2.83 3.87 3.64 12.66 8.99 233.0

Plant FE X X X X X X
Region×Year FE X X X X X X
State-Trends FE X X X X X X

Notes: This table presents regression coefficients from 14 separate regressions; one per column in each of the

two panels. Each column represents a separate sample, where the sample is indicated in the column headings.

An observation is a plant-year. The dependent variable is the plant-level unit-price, and the independent

variable is plant-level marginal cost. Marginal cost is instrumented by the interactions between national

fuel prices for electricity generation and 5-year lagged electricity generation shares. Standard errors are in

parentheses and are clustered by state. Regressions are weighted by Census sampling weights. ***,**,*

denotes statistical significance at the 1, 5, and 10 percent levels, respectively. See text for details. Source:

Census and Annual Survey of Manufacturers, MECS, EIA-SEDS.
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Table B3: Plant-Level Incidence: Mean and Standard Deviation

(1) (2) (3)
Incidence Incidence Coefficient

Mean Standard Deviation of Variation

Boxes 0.664 0.032 0.05
Bread 0.495 0.119 0.24
Cement 0.506 0.044 0.09
Concrete 0.605 0.092 0.15
Gasoline 0.364 0.034 0.09
Plywood 0.644 0.074 0.11

Notes: This table presents additional summary information pertaining to within-industry incidence het-

erogeneity. Column (1) presents the mean incidence for a given industry, where the mean is taken over

plant-level incidence measures. Plant-level incidence measures were created using plant-level markup es-

timates, combined with plant-level pass-through rates and industry-level demand elasticities. Column (1)

reflects the unweighted mean over these plant-level observations. Column (2) represents the standard de-

viation of these incidence estimates within an industry. Column (3) represents the coefficient of variation,

which is defined as the ratio of the standard deviation of a sample relative to it’s mean. Thus, Column (3)

is created by dividing Column (2) by Column (1).
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Table B4: Demand Elasticity Estimates

(1) (2) (3) (4) (5) (6)
Boxes Bread Cement Concrete Gas Plywood

Panel A: OLS

Demand Elasticity (εD) -0.377∗∗ -0.273 -0.387 -0.657 -0.0454 0.00469
(0.121) (0.211) (0.286) (0.505) (0.0748) (0.196)

Panel B: Productivity IV Estimates

Demand Elasticity (εD) -2.762∗∗ -5.233 -2.902∗∗ -4.275∗ -0.131 -1.926∗

(0.894) (9.187) (1.054) (1.980) (0.111) (0.820)

N 100 25 25 25 25 50
First Stage F-Statistic 11.71 0.267 9.312 5.209 8.673 8.181

Year Trend X X X X X X

Notes: This table presents 12 separate regressions, 6 per panel. An observation is the yearly change in an

industry-year, where the dependent variable in all regressions is ∆log(quantity). The independent variable

is ∆log(output price). Panel A presents OLS estimates, separately by industry. Panel B presents estimates

where price is instrumented with changes in industry level total factor productivity. Total factor productivity

is constructed using a quantity-based productivity index. The index is constructed by subtracting log inputs

from log outputs using industry-level cost shares as proxies for output elasticities. We use capital, materials,

labor, and energy inputs, where capital, materials, and energy are deflated by industry-year input price

deflators, and labor is measured in production hours. Standard errors are computed using Newey and West

(1987). Source: NBER-CES Manufacturing Database.
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