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Abstract

Transaction-level quantity discounts are a pervasive feature of US trade, shap-
ing both price variation and tariff incidence. Using administrative microdata, we
show that these discounts reflect transaction-level scale economies rather than mar-
ket power. Accounting for these micro-level economies resolves a key puzzle: while
observed import prices rose one-for-one with 2018-2019 US tariffs, we show this was
driven by the loss of scale economies as transaction sizes collapsed. Controlling for
this scale effect, the strategic pass-through of tariffs to scale-free prices falls to 60 per-
cent, implying foreign exporters absorbed a significant share of the burden through
reduced markups.

*We thank Nuno Limao, Charly Porcher, Daniel Xu, Justin Pierce, Davin Chor, Esteban Rossi-Hansberg,
Frederic Warzynski, and Xiang Ding for early conversations and Nahim Bin Zahur for discussion. Any
views expressed are those of the authors and not those of the US Census Bureau, the Board of Governors
of the Federal Reserve System, or any other person associated with the Federal Reserve System. The Cen-
sus Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance
protection of the confidential source data used to produce this product. This research was performed at a
Federal Statistical Research Data Center (CBDRB-FY25-P2193-R12042, R12792). Data analysis and coding
was entirely done by humans, and some text editing was done using AI tools.
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1 Introduction

Determining whether foreign producers or domestic buyers ultimately bear the burden
or incidence of tariffs is a central question in international economics. A critical element
in determining incidence is the pass-through of tariffs into prices (Jenkin, 1872). In this
paper, we revisit tariff incidence and pass-through in the 2018–2019 period, taking into
account an underappreciated feature of US trade: transaction-level quantity discounts.
Using comprehensive US microdata, we show that these discounts account for the ma-
jority of price variation within narrowly defined product categories, and are inconsistent
with the typical interpretation of the 2018–2019 period. Our findings reveal that account-
ing for quantity discounts reduces measured tariff pass-through, with foreign exporters
shouldering a much larger share of the tariff burden than previously recognized.

In our empirical analysis, we distinguish between factors that affect the level of prices
(such as firm productivity or market power) and those that affect the scale of prices (how
unit prices change with transaction size).1 If scale reflects price discrimination, tariffs
may simply transfer rents. If scale reflects real resource costs (e.g., logistics), shrinking
order sizes represent a rise in real unit costs - a loss of resources. While market power
may shift price levels, we find that it does not explain the steepness of the quantity dis-
count schedule. Specifically, we estimate that a 1% increase in transaction size leads to a
0.29% reduction in price—a ”scale effect” that is robust across relationships and driven
by genuine supply-side economies rather than price discrimination.

We aggregate the transaction-level data into unit values and run a series of tariff
pass-through regressions. We find that tariff pass-through to post-tariff buyer prices,
as estimated in prominent work, is about 100 percent. However, this result masks two
important underlying forces. First, we find that these measures of pass-through (near
100 percent) conflate two opposing forces: a strategic price cut by exporters and a me-
chanical price rise due to the loss of scale economies. We estimate that the ’scale-free’,
strategic pass-through—reflecting the shift in the exporter’s price schedule—is only 60
percent. Second, had exporters not cut markups, our results imply that observed tar-
iff pass-through would have exceeded 100 percent given the downward sloping supply
curve. While we do not account for any foreign retaliation, this provides a micro-founded
baseline for future research.2

A striking feature of both domestic and international markets is the substantial price
variation observed across seemingly identical products—a fact well documented in the

1We define the ”scale-free price” (p̃) as the price of a single unit, netting out volume discounts.
2Extending to China’s retaliatory tariffs and conducting general equilibrium analysis are beyond our

scope.
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literature (e.g., Stigler, 1961; Halpern and Koren, 2007; Atalay, 2014; Fontaine, Martin, and
Mejean, 2020; Bornstein and Peter, 2025; Burstein, Cravino, and Rojas, 2024). Bornstein
and Peter (2025) and Meleshchuk (2017) interpret these price differences entirely through
the lens of markup differences across orders of different transaction sizes. Similarly,
Alviarez, Fioretti, Kikkawa, and Morlacco (2023) assume market power and Burstein et al.
(2024) assume exogenous wedges. We find little empirical support for these mechanisms
in explaining quantity discounts in US trade. Instead, our results align with the distribu-
tion and operations research literature (Munson and Rosenblatt (1998), Munson, Jackson
et al. (2015), Hornok and Koren (2015)), as we find that quantity discounts are driven
by scale economies and fixed costs that must stem from the underlying production and
demand processes.3 Our analysis demonstrates that these discounts are not merely anec-
dotal but are a pervasive and quantitatively important feature of US trade.

The implications for tariff pass-through are large. Estimates of the incidence of the
2018–2019 tariffs are that they fell almost entirely on US buyers at the border, with pass-
through rates nearly unity (Amiti, Redding, and Weinstein, 2019; Gopinath, Itskhoki,
and Rigobon, 2010; Cavallo, Gopinath, Neiman, and Tang, 2021; Fajgelbaum, Goldberg,
Kennedy, and Khandelwal, 2020). To explain this result in a standard model setup re-
quires that exporting firms have constant markups and that the export supply curve fac-
ing the US is perfectly elastic (resulting in a flat marginal costs curve). In that setup,
exporters bear none of the tariff burden. In contrast, we estimate that the export supply
curve facing the US slopes downward (as is needed to explain quantity discounts).

Our approach demonstrates that the way scale economies aggregate across transac-
tions is fundamental to understanding overall tariff pass-through. By using detailed
transaction-level data, we show that micro-level quantity discounts and scale economies,
when aggregated, directly determine the observed market-level incidence of tariffs. This
perspective moves beyond traditional models that assume uniform pricing or infer scale
economies from aggregate data (e.g., Antweiler and Trefler (2002); Bartelme, Costinot,
Donaldson, and Rodriguez-Clare (2025); Lashkaripour and Lugovskyy (2023)). We ex-
tend the standard pass-through framework (e.g., Weyl and Fabinger (2013); Amiti et al.
(2019); Ganapati, Shapiro, and Walker (2020)) by showing that aggregate pass-through is
not a primitive, but an outcome shaped by the distribution of transaction sizes and the
prevalence of non-linear pricing. This approach clarifies how micro-level pricing behav-
ior translates into macro-level effects.

3This is complementary to models that emphasize transaction costs and search frictions (e.g., Allen
(2014); Krolikowski and McCallum (2025)), but we do not explicitly model these frictions. Instead, we
capture their effects to the extent that they manifest as scale economies or quantity discounts in observed
prices.
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Our single correction helps resolve three puzzles in international trade. First is the
pass-through puzzle: recent empirical work finds complete tariff pass-through to US im-
port prices (Fajgelbaum et al., 2020; Cavallo et al., 2021), a result that in standard models
implies foreign export supply is perfectly elastic. This contradicts the consensus that the
U.S. is a large open economy, and the views of the optimal tariff literature (Broda, Limao,
and Weinstein, 2008; Ossa, 2014) that U.S. tariff pass-through should be incomplete. We
estimate that supply is actually downward-sloping (γ < 0); thus pass-through only ap-
pears complete because plummeting transaction volumes push unit costs up the supply
curve, masking the strategic price cuts by exporters.

Second is the incidence puzzle: while US import prices suggest domestic consumers
bore the entire tariff burden, independent evidence from foreign production sites reveals
significant welfare losses for exporters (Chor and Li, 2024). Indeed, typical model param-
eters imply that 70 percent of tariff incidence would fall on the foreign exporter (see Mi-
ran (2025)). This creates a tension: if exporters fully passed on the tariffs, how could they
suffer losses? We resolve this by showing that strategic pass-through was incomplete. Ex-
porters lowered their effective markups and prices through quantity adjustments, thereby
absorbing a significant share of the incidence, consistent with the observed contraction in
foreign activity. We estimate that around 60 percent of tariff incidence fell on foreign
exporters.

Third is the exchange rate disconnect puzzle: while tariff prices appear to move one-
for-one, exchange rate pass-through is notoriously incomplete, typically around 0.5 (Gopinath
et al., 2010; Amiti, Itskhoki, and Konings, 2014). By correcting unit values for quantity dis-
tortions, we align tariff pass-through estimates (≈ 0.6) with these established exchange
rate findings, suggesting a unified pricing behavior across shocks.

The rest of the paper proceeds as follows. We first decompose transaction-level prices
and show that the size of transaction explains a very large portion of the dispersion in
observed prices. Second, we show this is a largely supply-side phenomenon, where shifts
in demand identify the transaction-level supply elasticity. Third, we show that variation
in quantity discounts is driven by observable cost factors (shipping costs and within-
firm transactions), as well as being higher in markets with greater price dispersion (a
common proxy for higher search frictions). Fourth, we consider aggregation and show
that reduced-form estimates of pass-through require important additional interpretation,
given quantity discounts. Finally, we revisit the question of tariff incidence.
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2 Conceptual Framework

Analyzing tariffs with quantity discounts requires a framework accommodating flexible
supply slopes and potentially non-linear pricing (Stole, 2007). Classic analysis typically
assumes upward-sloping supply and uniform pricing (Weyl and Fabinger, 2013). We
review the uniform pricing benchmark before formalizing our transaction-level decom-
position. This approach sets the stage for our later empirical analysis, which assesses the
prevalence and consequences of quantity discounts in US import data.4

Under uniform pricing and specific taxes, pass-through (ρ = ∂p/∂t) is well-defined.5

Incidence is the ratio of downstream to producer welfare changes: I ≡ (∂DS/∂t)/(∂PS/∂t).
Under monopoly, I = ρ; under perfect competition, I = ρ/(1− ρ). Conditional on market
structure, pass-through is a sufficient statistic for local incidence.6

Non-uniform pricing complicates this logic. Assume a continuum of customers op-
timally choosing quantities.7 If a monopolist implements first-degree price discrimina-
tion, they price along the demand curve, capturing all surplus. With a tariff, a single
pass-through figure is undefined, as each customer type faces a different price and pass-
through rate. Aggregate pass-through is uninformative. In this case, incidence is me-
chanically 0 (I = 0), as all surplus loss falls on the producer. Conversely, under perfect
monopsony where the buyer extracts all surplus, a tariff extracts all buyer surplus, and
incidence is infinite (I → ∞).

We decompose the price of transaction t between seller i and buyer j for variety v and
quantity q with tariffs τ as:

log Pt = log p̃t + log p(qt) = log c̃t + log µ̃t + log c(qt) + log µ(qt) + log(1 + τt). (1)

Normalizing c(1) = µ(1) = 1, level terms p̃ = c̃µ̃(1 + τ) capture product- and firm-level
heterogeneity, while scale terms p(q) = c(q)µ(q) reflect variation with size. This distin-
guishes scale economies from level effects. Since costs and markups vary with quantity,
a single price is undefined. However, we can still analyze the local effects of a policy by

4While these results have been explored theoretically (Maskin and Riley, 1984), empirical study is largely
neglected. (Exceptions include Meleshchuk (2017) in trade and Verboven (2002) in industrial organization).

5For exposition, we use a specific tax. An ad-valorem tax, such as a tariff, changes the derivations, but
the same logic applies (Bishop, 1968; Cheung, 1998)

6The relationship between incidence and pass-through depends on the assumed market structure. While
I = ρ under monopoly and I = ρ/(1− ρ) under perfect competition, intermediate cases of oligopoly can
also be characterized. For example, under symmetric Cournot competition, incidence can be expressed as
a function of both the pass-through rate and a ”conduct parameter” θ that captures the degree of market
power, as formalized in the general framework of Weyl and Fabinger (2013).

7We focus on quantity, but the framework is isomorphic to quality (Melitz, 2003).
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(a) Screw Bolts on Alibaba (b) Markers on Amazon Business

Figure 1: Real World Examples of Quantity Discounts

aggregating up from the transaction level.8

Figure 1 shows real-world examples of quantity discounts from Alibaba, a large online
marketplace and Amazon Business. In both panels, we see that as the quantity purchased
increases, the unit price decreases significantly. In the first example (Figure 1a), we would
say that p̃ = 0.10 and p(q) decreases from 0.10 to 0.04 as quantity increases from 1 to 100.
The elasticity of p(q) to q is approximately −0.35.

2.1 Framework: Aggregate Scale Economies

Equation (1) defines transaction-level scale economies. We also consider how aggregate
prices and costs respond to shocks. Using the scale-free price p̃t = µ̃t c̃t, we examine how
an aggregate price index P changes with non-linear pricing.

We define the aggregate price index P = ∑t∈T wt p̃t, where p̃t = Pt/p(qt) is the scale-
free price and wt are weights. This separates cost/markup changes from compositional
effects, decomposing aggregate scale economies SP into level effects (p̃) and scale effects
(p(q)).

2.2 Framework: Tariff Incidence

We analyze the local incidence of tariffs on downstream buyer surplus, producer profits,
and government revenue. Buyer surplus changes are derived by integrating under the
demand curve (Weyl and Fabinger, 2013):

DS (p) ≡
∫

t∈ijvt

∫ ∞

Pt
D(z)dzdt,

8We assume scale terms are common across transactions; we test this in the empirical section.
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such that to a local approximation, defining a scale-free pass-through as ρ̃ ≡ dlog p̃t
d log(τ+1) ,

dDS
d (τ + 1)

= −
∫

t
ρ̃

Et

1 + τ
dt (2)

where Et represents expenditures.
This computation does not require demand curvature, which is only needed for global

results and follows from individual buyers internalizing how changes in orders affect
their prices.

Suppose we use unit values where ρ ≡ d log Pt
d log(1+τ)

as a reduced-form pass-through.
Then, pass-through estimated using unit values conflates strategic price changes with
mechanical scale effects:

ρ̃ = ρ− d log p(qt)

d log qt

d log qt

d log(1 + τ)
.

If scale economies are large and quantities fall with tariffs, pass-through will be overesti-
mated. Conversely, if we use ρ instead of the true pass-through of scale-free prices ρ̃, the
change in downstream surplus will be overestimated.9 However, the unit pass-through ρ

still plays a role, as it is linked to producer surplus, which we now turn to.
Producer surplus is defined as:

PS ≡
∫

t∈ijvt
[R(t)− C(t)] dt,

where R(t) is the revenue from a transaction and C(t) are the costs of a transaction.
We can then differentiate with respect to the tariff rate:

dPS
d (τ + 1)

=
∫

t

[
dR(t)

d (τ + 1)
− dC(t)

d (τ + 1)

]
dt. (3)

Revenue is observable; costs are not. Using Equation (1), we decompose revenue into
costs and markups. We require: (1) scale economies and price discrimination (c(q), µ(q));
(2) the response of revenue and quantity to tariffs; and (3) base costs c̃ or markups µ̃. We
estimate the first two empirically and calibrate the third from literature.

9Appendix A.1.1 allows for p(qt) to directly vary with 1 + τ.
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Revenue changes can be expressed in terms of local elasticities:10

dR
d (1 + τ)

=

[
d log p̃

d log (1 + τ)
+

(
1 +

d log p (q)
d log q

)
d log q

d log (1 + τ)
− 1
]

R
1 + τ

.

Cost changes are similarly decomposed:

dC
d (1 + τ)

=

[
d log c̃

d log (1 + τ)
+

(
1 +

d log c (q)
d log q

)
d log q

d log (1 + τ)

]
C

1 + τ

We decompose the price-quantity elasticity into scale economies γc ≡ d log c(q)
d log q and

price discrimination γµ ≡ d log µ(q)
d log q .

We use the 2018–2019 US tariffs to identify changes in scale-free prices, quantities,
and costs. Recovered scale economies allow us to decompose price changes and compute
incidence and surplus changes.

Government revenue is: G ≡
∫

t τR(t). The change in government revenue with re-
spect to the tariff rate is:

dG
d (1 + τ)

=
∫

t

[
τ

dR (t)
d (1 + τ)

+ R(t)
]

.

Global incidence requires estimating supply and demand curves and integrating, ne-
cessitating functional form assumptions.

Before we can implement the framework above, we first turn to a basic question. What
is the nature of price variation in the underlying data, and as decomposed by equation
(1)? Is there even a correlational link between transaction size and price?

3 Decomposing Prices

3.1 Data

We focus on the universe of US imports from abroad. We consider all imports that exceed
the de minimis threshold and are reported to the US Customs and later processed by the
US Census to add firm identifiers. This combined database, the Longitudinal Firm Trade
Transactions Database (LFTTD), is the source for every shipment transaction entering the
US via air, water, or land.

10We define prices as the tariff-inclusive price (FOB price plus tariffs). We revisit the difference with the
freight inclusive price (CIF) in Section 5.4. Additionally, if we know market conduct, the incidence ratio
I = dCS/d log T

dPS/d log T is: I = −Expenditure×ρ̃
−Revenue×[1−(1−θ)ρ]

≈ ρ̃
1−(1−θ)ρ
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The data consider exporters (labeled as the ”Manufacturer ID” from the address on
the customs record, but may be a wholesaler or another intermediary) shipping products
to downstream US firms (Kamal and Monarch, 2018). These downstream US firms are a
mix of manufacturers, wholesalers, and retailers. Our units of observation are individual
transactions of an exporting firm, importing firm, 10-digit US Harmonized Tariff Schedule
code (HTS-10), port of entry, and date of entry. For each transaction, we observe the
value, shipping and freight charges, method of transport, tariffs and customs charges, a
standardized measure of quantity within that HTS code, and the weight of the shipment.
Of note, quantities and weights are often equivalent for many HTS codes, as goods are
often sold by weight.

Prices are computed as value/quantity, though further analysis will also compute
prices inclusive of tariff and freight charges. We decompose prices for 2017 and report
robustness using 2012 data. In 2017, 50% of trade transactions occurred between parties
that trade more than 100 times within an HTS-10 code in a year.

Alternative Data For domestic trade, we consider the US Census and Department of
Transportation Commodity Flow Survey (CFS), focusing on 2012. See Appendix C.1 for
details. The downside of this data is the lack of information on the identity of the buyer.
Collectively these two datasets cover the entire universe of final and intermediate physi-
cal goods consumed in the United States.

3.2 Decomposing Import Prices

We demean log variables by variety (HTS-10). 11 We decompose prices into a scale com-
ponent (γ) and a level component (µ). The relationship for transaction t is:

log pi→j,t,v = γ log qi→j,t,v + µi→j,v + ξi→j,t,v, (4)

where γ is the quantity scale elasticity and µi→j,v is the relationship-specific price level. µ

absorbs time-invariant factors (markups, quality, bargaining), isolating the scale effect γ.
Index v is HTS-10 and source country; i is seller; j is buyer.12

Table 1 decomposes 2017 import prices for 60 million residualized transactions. A uni-
form quantity relationship explains 44.6% of price variation (Spec 1). Allowing quantity
discounts to vary by HTS 6-digit (following the logic of Rauch (1999)) code explains 57.6%

11We also explored time variation, demeaning by HTS-10 and month.
12Samples are aligned to include only observations present in all decompositions, removing singletons

(dropping about 5% of observations).
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of variation (Spec 2).
A stricter test looks within Buyer-Seller-Variety relationships. Seller-Variety fixed ef-

fects account for 73% of the price variation in the data. Buyer-Variety fixed effects account
for 50% of the price variation. These highly disaggregated controls absorb 73.3% of the
variation in prices (Specification 3). Adding a uniform quantity discount explains 38.3%
of the variation (specification 4; 17.4% directly and 20.9% through the covariance). Vary-
ing discounts by HTS 6-digit strengthens this (Spec 5). Even with millions of relationship
fixed effects, transaction size explains a large share of price variation.

We compare this to yearly aggregate measures (market power, total annual volume)
in Specifications 6-10.

The aggregate quantity (within variety), bought by a particular buyer, sold by a par-
ticular seller, and sold from a particular seller to buyer, is defined:

log (qi,v) ≡ log ∑
i′,v′=i,v

qi′→j,t,v′ , log
(
qj,v
)
≡ log ∑

j′,v′=j,v
qi→j′,t,v′ ,

log
(
qi,j,v

)
≡ log ∑

i′,j′,v′=i,j,v
qi′→j′,t,v′ . (5)

Aggregate volume measures explain only 6.5% of variation (Spec 6), compared to 57.6%
for transaction-level quantity (Spec 2). Adding aggregate measures to transaction-level
quantity adds minimal explanatory power, increasing the R-squared from 44.6% (Spec
1) to just 45.0% (Spec 7). This suggests that discounts are driven by per-shipment scale
economies — such as in logistics, production, or handling — rather than by bargaining
power derived from aggregate purchasing volume.

We measure traditional market power using bilateral market shares (Bernard, Dhyne,
Magerman, Manova, and Moxnes, 2022):

si→j,v =
qi,j,v

qi,v
, si←j,v =

qi,j,v

qj,v
. (6)

Shares account for only 0.8% of variation (Spec 8). Specification 9 confirms minimal addi-
tional explanatory power. Compared to seller/buyer fixed effects (Spec 10, 11), relation-
level aggregates have minimal power.

The key takeaway from Table 1 is the dominance of specific transaction size over ag-
gregate leverage. Standard theories of bargaining power or second-degree price discrimi-
nation suggest that total volume (Specification 7) or market share (Specification 8) should
drive discounts. Instead, we find that the specific size of a single shipment is the primary
explanatory factor. This suggests a logistics and supply-chain interpretation, where fixed
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Table 1: Correlating Price Variation: Decomposition of Log(Price) Variation

Specification Variance Decomposition

Controls Fixed Effects Controls Fixed Effects Covariance Residual

1 log q 44.6% 55.4%
2 log q x HTS6 57.6% 42.4%
3 Seller-Buyer-Variety 73.3% 26.7%
4 log q Seller-Buyer-Variety 17.4% 41.6% 20.9% 20.1%
5 log q x HTS6 Seller-Buyer-Variety 31.5% 32.0% 20.2% 16.3%
6 Aggregate Quantities 6.5% 93.5%
7 + log q 45.0% 55.0%
8 Relationship Shares 0.8% 99.2%
9 + log q 44.6% 55.4%

10 Seller-Variety, Buyer-Variety 72.5% 27.5%
11 Relationship Shares Seller-Variety, Buyer-Variety 1.5% 72.6% -1.5% 27.4%

Notes: This table decomposes 2017 import transaction-level price variation after demeaning log prices and
quantities by country-origin and variety (HTS-10) fixed effects. Sellers are designated at the Manufacturer
ID and variety. Buyers are designated at the domestic firm ID and variety. For consistency, the sample is
fixed to remain constant over all specifications. See the text for full details and specification.

costs of packaging, shipping, and handling create economies of scale at the batch level,
over a power-based interpretation where ”important” buyers extract consistently lower
prices for a particular transaction. Even controlling for the identity of the buyer and seller
(Specification 4), which absorbs permanent bargaining power, the transaction-level quan-
tity effect remains robust.

Alternative Sample: Domestic Trade Data In domestic trade data we broadly find sim-
ilar trends to the international trade import data. Appendix Table A.8 replicates the ex-
ercise. Within tightly defined varieties, a simple log-linear quantity discount explains
between 30-40% of all price variation. See Appendix C.1.1 for further details.

These descriptive regressions show transaction size predicts price, even with fixed
effects. Scale effects correlate to over half of price variation, distinct from level effects. We
next establish causality, isolating supply-side scale economies from demand effects.

4 Scale Economies and Quantity Discounts in Purchases

Is the price-quantity link driven by supply-side scale economies or downward-sloping
demand? We isolate the supply-side to recover the buyer’s price schedule. Identifying the
transaction-level supply slope is challenging. Negative price-quantity correlation could
reflect scale economies or a demand curve.
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We adopt a log-linear specification, a choice naturally fitting the local incidence frame-
work. We decompose the price of a transaction t between seller i and buyer j for variety
v and quantity q as follows:

pi→j,t,v = p̃i→j,vqγ
i→j,t,vξi→j,t,v. (7)

p̃ = µ̃c̃ is the unit price shifter. ξ captures unobserved quality/measurement error. γ =

γc + γµ combines cost-scale (γc) and price-discrimination (γµ) elasticities.
The demand equation is:

qi→j,t,v = q̃i→j,t,v f
(

pi→j,t,v
)

, (8)

Following Berry and Haile (2021), we use high-frequency demand shocks q̃i→j,−t,v to
avoid endogeneity with unobserved quality ξi→j,t,v.

In Appendix B.3, we also put explicit structure on the demand following Feenstra
(1994). In this situation with high frequency data, we assume that variation in residual
supply and demand across different sellers within a buyer and across time (after double
differencing) are orthogonal to each other. Broadly speaking both results find similar
results for the curvature of the pricing curve. We next detail our instrumental variable
and fixed effect strategy.

4.1 Scale Pricing With Instrumental Variables and Fixed Effects

The estimating relationship is:

log pi→j,t,v = γ log qi→j,t,v + µi→j,v + ξi→j,t,v. (9)

The scale elasticity γ, governs how quickly prices change as quantity ordered increases
within a buyer-seller relationship. We use buyer-seller-variety fixed effects, identify-
ing off within-relationship quantity variation. We micro-found downstream demand
shocks affecting the optimal inventory stocking of a downstream firm (Arrow, Harris,
and Marschak, 1951; Baumol, 1952), with firms ordering different levels of a variety over
the course of a year. This model also produces variation in order frequencies, consistent
with the lumpiness of international trade flows documented in inventory-based models
(Alessandria, Kaboski, and Midrigan, 2010).

This strategy is in the spirit of Hillberry and Hummels (2013), but differs in a critical
element: we consider transactions and abstract away from any measures of aggregates of
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transactions or direct measures of classic market power.
Causal identification faces two threats: unobserved relationship characteristics and

simultaneous supply curve shifts. Unobserved quality variation (e.g., different iPhone
models under one HTS code) could bias results. If quantity varies inversely with quality,
this creates a mechanical negative relationship, opposite to the standard IO bias in de-
mand estimation. This case resembles third-degree price discrimination or Alchian-Allen
effects (Hummels and Skiba, 2004). We require a time-varying demand shock at the buyer
level to address these threats.

Unobserved Characteristics Are we mismeasuring quality within even the highly dis-
aggregated HTS-10 categories and a trading pair of downstream buyers and factories?
For example, a buyer may purchase 10,000 iPhone 16s at $500 and 1,000 iPhone 17s at
$1000 and both under HTS code “8517.14.0050”. If goods are sold in efficiency units, we
need a quantity shifter, uncorrelated with quality ξ.

This would be consistent with some degree of third-degree price discrimination. It
also would be consistent with a form of the Alchian–Allen ”shipping the good apples out”
effect (Hummels and Skiba, 2004). However, either effect would be a threat to identifying
a form of the supply curve. (This exists for even relatively homogeneous products, such
as concrete and gasoline). Essentially we need a time-varying demand shock, either at
the buying firm level, or even better at the buying-firm HTS10-digit level or buying firm-
sourcing country level.

Measurement error A related issue is measurement error in the independent variable,
quantity.13 Measurement error has two potential links: first is in q itself, and second in its
implicit link to p through the fact it is generated using q. The first can mechanically induce
attenuation bias if q is observed with classic measurement error. The second also induces
bias by creating a mechanical negative correlation between the error in the derived price
and the mismeasured quantity q. As with standard measurement error, an instrument
solves the additional error implicit in p through mismeasured q. We now turn to an
instrumentation strategy.14

Instrumental Strategy Instrument validity depends on Var(q, ξ). Positive covariance
(larger quantities of higher quality) biases OLS upward; negative covariance biases it

13We assume that transaction values are reported without error, as tariffs are charged on them and are
closely monitored.

14Our unit of observation is a transaction, thus relationships with more transactions are more influential,
echoing the weight correction term in estimators such as Broda and Weinstein (2006).
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Table 2: Recovering Quantity Discounts: OLS Results

(1) (2) (3) (4) (5)

log p

log q -0.83 -0.533 -0.469 -0.296 -0.287
(0.0127) (0.00249) (0.00275) (0.00328) (0.00354)

R2 0.766 0.913 0.446 0.797 0.81
Within R2 0.766 0.531 0.446 0.253 0.244

Fixed Effects
Variety ✓
Buyer-Seller-Variety ✓ ✓
Seller-Month-Variety ✓

Demeaned
Month-Variety ✓ ✓ ✓
Country-Variety ✓ ✓ ✓

Notes: Round parentheses represent standard errors clustered at the relationship level. Demeaning regular-
izes all variables by country-origin and product variety (HTS-10) fixed effects, as well as month and variety
fixed effects. Sellers are designated at the Manufacturer ID and variety level. Buyers are designated at the
domestic firm and variety level. See the text for full details and specification. Standard errors are clustered
at the relationship.

downward. We require a high-frequency instrument. Assuming goods within an HTS-
10-buyer pair are linked through the buyer’s problem, changes in other purchases act as
instruments.

With our high degree of fixed effects, we need a fine-grained instrument for qi→j,t,v

that varies at the monthly or weekly transaction level. This instrumental strategy relies
on the demand-side variation, exogenous shifts in buyer demand that trace out the supply
curve.

We instrument transaction size qi→j,t,v with the total quantity of variety v purchased
by buyer j from other transactions in the same month:

IVi→j,t,v ≡ log ∑
t ̸=t′,t′∈(montht)

qi→j,t′,v. (10)

This leverages buyer-level demand shocks, assumed orthogonal to seller-specific quality
shocks.

The validity of this instrument rests on the assumption that buyer-level demand shocks
for a variety v are correlated across purchases, while being orthogonal to seller-specific
supply or quality shocks ξi→j,t,v. We use exogenous shocks to a buyer’s total demand for a
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variety to trace out the supply curve for specific transactions. For example, a downstream
demand shock for a buyer’s final product would increase its demand for input v from all
its suppliers, but would be uncorrelated with a temporary quality issue from a single sup-
plier i. Because the instrument proxies for the buyer’s total downstream activity, it shifts
demand for inputs. Whether inputs are substitutes or complements determines the shape
of the demand curve, but the shift (the instrument) remains correlated with quantity de-
manded from all suppliers, orthogonal to supplier-specific supply shocks.

This strategy exploits variation in buyer procurement and inventory (formalized in
Appendix A.5). Buyers face monthly demand shocks ε j,t that determine total procure-
ment, allocated across suppliers based on quantity discounts. Each supplier’s monthly
quantity is then split across transactions for logistical reasons—shipping schedules, in-
ventory timing, payment terms.

To control for time-varying supply shocks, we include another set of fixed effects.

Supply Shocks Is identifying variation coming off a shift in the supply curve, rather
than a shift in demand? To ensure we identify the supply curve, we control for temporal
supply shocks as many trading relationships are long-lived: γi,v,t∈Mt , where Mt is the
month of transaction t. These stringent fixed effects reduce sample size, dropping 30% of
value and transactions.15

The inclusion of seller-month-variety fixed effects is critical for identification. By com-
paring the same seller across different buyers in the same month, we absorb any time-
varying supply shocks—such as excess inventory or seasonal cost changes—that might
be correlated with buyer demand.

A threat to identification would be non-linear pricing based on total monthly volume
(rebates). However, as shown in Specification 7 of Table 1, aggregate volume has negligi-
ble explanatory power.

We also conduct robustness checks by varying the construction of the instrument, such
as using alternative time windows (weekly, quarterly) and looking only within a rela-
tionship. We also exploit a slightly different strategy that constructs an IV excluding all
purchases from the same supplier. This captures cross-supplier correlation from common
demand shocks. Exclusion holds if supplier-specific shocks don’t affect total demand or
other suppliers’ allocations.16

15As robustness exercises, we controlled for time-varying country-level characteristics (γc,v,t), relation-
ship length within a year, and only arm’s-length relationships.

16We also conduct robustness on products that are less likely to be measured with error - those that are
measured in kilograms only. We also only consider qt that is small to aggregate q bought in that period.
In the next section, we interact γ with a host of buyer and supplier characteristics, we also show that base
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Table 3: Recovering Quantity Discounts: IV Results

(1) (2) (3) (4) (5)

OLS IV Estimates: log p

log q -0.268 -0.284 -0.315 -0.288 -0.200
(0.00463) (0.00151) (0.00239) (0.00152) (0.0460)

First Stage Coeff. -0.773 -0.654 0.011
(0.00446) (0.00500) (0.00103)

First Stage F-Stat 30040 8425 10020 115

R2 0.800
Within R2 0.226 0.226 0.219 0.225 0.218
IV Baseline Within-Relationship 3+4 Other Suppliers

Fixed Effects
Buyer-Seller-Variety ✓ ✓ ✓ ✓ ✓
Seller-Month-Variety ✓ ✓ ✓ ✓

Demeaned
Month-Variety ✓ ✓ ✓ ✓ ✓
Country-Variety ✓ ✓ ✓ ✓ ✓

Notes: Round parentheses represent standard errors clustered at the relationship level. The sample for col-
umn (1) replicates the OLS specification for this sample. Demeaning regularizes all variables by country-
origin and variety (HTS-10) fixed effects, as well as month and variety fixed effects. Sellers are designated
at the Manufacturer ID and variety level. Buyers are designated at the domestic firm and variety level. The
J-statistic for overidentification is 5.722. The first-stage coefficients reflect the distinct mechanisms under-
lying each instrument: negative for within-month allocation (Columns 2 and 3, leave-one-out structure)
and positive for cross-supplier variation (Column 5, common demand shocks). See Appendix A.5 for the
complete microfoundation. See the text for full details and specification. Standard errors are clustered at
the relationship.

4.2 Transaction-level Supply: Import Regression Results

We present regression results for the scale elasticity γ (Equation (9)). Table 2 shows OLS
results. The base regression shows -0.830 (Col 1), but clearly mixes supply and demand.
Simple demeaning yields -0.469 (Col 3). Adding buyer-seller-variety fixed effects reduces
this to -0.296 (Col 4). Including seller-month-variety fixed effects yields -0.287 (Col 5).
Thus, a 10% transaction size increase lowers price by 2.9%.

Table 3 presents IV results using the instrument from Equation (10). The first stage
is strong (Col 2). The second-stage estimate is -0.284, close to OLS (Col 1). A related
instrument (constructed using only the total other purchases from the same manufacturer
within the relationship) yields similar results (Col 3), with γ ≈ −0.315, with a first stage
coefficient of -0.654. Using both instruments finds similar results (Col 4).

prices are uncorrelated with changes in total volume. We can also use a placebo test with future purchases,
which should be uncorrelated with current transaction quantity.
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Column 5 provides an alternative identification strategy. Rather than exploiting within-
month transaction allocation (Columns 2-4), it uses cross-supplier variation from com-
mon demand shocks. The weaker first stage (F=115) reflects reduced sample size (re-
quires multiple suppliers per buyer-month) and noisier variation (cross-supplier correla-
tion weaker than within-month mechanical constraint).

Our two IV strategies exhibit different first-stage signs, reflecting the distinct economic
mechanisms at work. The baseline specification (Column 2) shows a negative first-stage
coefficient (-0.773), while the cross-supplier specification (Column 5) exhibits a positive
coefficient (0.011).

These contrasting signs are expected (Appendix A.5). The negative coefficient arises
from the leave-one-out structure of within-month allocation. When buyers split monthly
procurement totals across transactions, larger allocations to one transaction mechanically
reduce allocations to others - creating negative correlation. This is standard in peer effects
literature (Angrist, 2014) where group-level constraints induce negative within-group
correlations. The positive coefficient in Column 5 reflects common demand shocks across
suppliers: when a buyer faces increased downstream demand, purchases from all suppli-
ers rise together.

Both instruments satisfy the exclusion restriction under different assumptions. For
Column 2, transaction-specific shocks must be orthogonal to monthly procurement plans
(such as predetermined by production schedules) and allocation timing (like those deter-
mined by logistics). For Column 5, supplier-specific shocks must not affect total buyer
demand or allocations to other suppliers.

Table 4 summarizes heterogeneity across HTS 6-digit categories. We re-estimate our
preferred IV specification separately for each category to recover γv. In both the full OLS
(Col 3) and IV specifications (Col 5), most products exhibit significant discounts, with
mean (-0.275, -0.284) and median (-0.223, -0.239) elasticities consistent with the aggregate.
We use Column (5) as a baseline in our incidence calculations.

Domestic Data We estimate supply using domestic data from the CFS in Appendix C.2.
Using a similar IV strategy, we find γv between -0.21 and -0.26. While slightly smaller in
magnitude, these estimates are consistent with our international trade results, suggesting
similar supply-side scale economies in domestic and international transactions.

Structural Estimation For robustness, we employ a structural approach to jointly esti-
mate supply and demand elasticities, following Feenstra (1994). This method relies on
the heteroskedasticity of orthogonal supply and demand shocks for identification rather
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Table 4: Heterogeneity in Quantity Discounts: Variation across Products

(1) (2) (3) (4) (5)

log p

log q median -0.344 -0.267 -0.222 -0.241 -0.239
× Variety mean -0.367 -0.305 -0.275 -0.310 -0.284

variance 0.211 0.197 0.217 1.160 0.245

R2 mean 0.576 0.835 0.85
First Stage F mean 5.05 45.3

Fixed Effects
Buyer-Seller-Product ✓ ✓ ✓ ✓
Seller-Month-Product ✓ ✓

Demeaned
Month-Product ✓ ✓ ✓ ✓ ✓

Notes: This table summarizes the results from various specifications estimating the price elasticity with
respect to quantity. Each column corresponds to a different model specification as detailed by the fixed
effects and demeaning procedures applied.

than traditional instrumental variables. In Appendix B.3, we aggregate transactions to
the monthly level for 6-digit HS categories and assume constant elasticities of substitu-
tion and supply. The structural estimates yield a median supply elasticity (ω) of approx-
imately -0.23 to -0.37, which closely matches our reduced-form estimate of γ ≈ −0.29.
Additionally, we recover a median demand elasticity (σ) of approximately 3.4. The con-
sistency between these structural estimates and our baseline results reinforces the valid-
ity of our supply-side identification. We note that while the structural approach provides
valuable cross-validation, the assumed CES demand and monopolistic competition mar-
ket structure are inconsistent with our later findings on pass-through. We refer readers to
Ganapati and Hottman (2026) for a consistent treatment.

Validation of Approaches In Appendix B.1, we validate our baseline estimates by com-
paring the variety-level scale elasticities (γv) recovered from our OLS and IV strategies
against those obtained from alternative methods. We find a strong positive correlation
between our preferred estimates and those derived from a structural model of supply and
demand (following Feenstra (1994)), as well as estimates based purely on observable ship-
ping costs. The fact that shipping costs—a direct measure of logistics technology—exhibit
scale economies that are highly correlated with our overall price elasticities reinforces
our interpretation that the observed quantity discounts are driven by real resource costs
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rather than demand-side factors or model-specific assumptions. Our elasticities are lower
than Bornstein and Peter (2025) who find γ ≈ −0.6 for U.S. consumers in the retail con-
text, and similar to Meleshchuk (2017) who finds γ ∈ (−0.2,−0.4) in Colombian trade
data, though interpretation (scale vs. markups) differs.

5 The Mechanism Behind Quantity Discounts

Having established that the supply curve facing US buyers is downward sloping (γ < 0),
we now determine its source. If γ reflects price discrimination (γµ < 0), tariffs may
simply transfer rents. If γ reflects real resource costs (γc < 0), shrinking order sizes
represent an efficiency loss.

We distinguish between effects altering the level of prices (scale-free price p̃) and those
affecting the scale elasticity (γ). We find the scale component is cost-driven. Relationship-
level market power and bargaining explain little of variation in γ. Instead, evidence
points to common, cost-based scale economies—arising from fixed transaction or ship-
ping costs. This is supported by three facts: (1) market power proxies fail to explain
heterogeneity in discounts; (2) intra-firm and arm’s-length transactions exhibit identical
schedules; and (3) cross-market variation correlates with cost and product attribute prox-
ies rather than competition measures.

Recall the decomposition from Equation (1):

log p(q) = log c̃ + log µ̃︸ ︷︷ ︸
level

+ log c(q) + log µ(q)︸ ︷︷ ︸
scale

.

Both the level terms (c̃, µ̃) and the scale terms (c(q), µ(q)) can reflect a mix of cost and
markup elements. The level terms capture product- and relationship-specific heterogene-
ity in marginal costs and markups, while the scale terms capture how costs and markups
vary with transaction size.

We decompose the transaction-level elasticity γi→j,v into cost (γc) and markup (γµ)
components:

γi→j,v = γc
i→j,v + γ

µ
i→j,v. (11)

Following Stole (2007), optimal non-linear pricing links the markup component of the
scale elasticity to the residual demand elasticity ϵD,v faced by the firm (i→ j):

γv = γc
v + (1− 1/ϵD,v). (12)
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This decomposition yields a clear testable prediction for both sides of the market. On the
seller side, greater monopoly power (lower |ϵD|) incentives firms to use steeper discount
schedules to screen buyers and extract surplus. On the buyer side, greater monopsony
power allows large buyers to demand aggressive bulk discounts (”power buyer” effects),
also implying a steeper schedule. Thus, if market power drives discounts, γ should be
more negative in concentrated markets. In contrast, perfectly competitive markets should
simply pass through the technological cost savings γc.

Empirical Strategy We proceed in three steps to disentangle cost-based scale economies
from markup variation:

Step 1: Common quantity discounts. We begin by imposing that all seller-buyer
pairs within a variety share the same cost-based scale elasticity: γc

i→j,v = γc
v. Under this

assumption, any observed heterogeneity in γi→j,v across relationships must reflect differ-
ences in markup behavior γ

µ
i→j,v. We test whether variation in market power—measured

by seller concentration, buyer concentration, or bilateral market shares—systematically
predicts this heterogeneity. If markup variation were the primary driver, we would ex-
pect relationships characterized by greater market power to exhibit systematically differ-
ent quantity discounts. Alternatively, a common γv across relationships could also reflect
a common markup component γ

µ
v arising from symmetric market frictions or search costs

faced by all buyers within a market—an interpretation we explore further in Step 3.
Step 2: Offsetting effects. If we find little explanatory power from market power mea-

sures in Step 1, a mechanical possibility remains: firms with greater market power could
exhibit both steeper markup schedules with respect to quantity (higher γ

µ
i→j,v) and flatter

cost curves (lower |γc
v|), such that the two effects offset and leave the total scale elastic-

ity γi→j,v relatively constant. To address this, we exploit variation in vertical integration.
Intra-firm transactions—where transfer prices are often set to reflect cost—provide a natu-
ral benchmark for the cost component γc

v. If quantity discounts are similar for within-firm
and arm’s-length transactions after controlling for relationship fixed effects, this suggests
that the common cost component γc

v dominates.
Step 3: Search and transaction costs. Finally, we examine whether the common com-

ponent γc
v itself reflects genuine production-side scale economies or instead arises from

search and transaction costs on the buyer side. We test whether γv varies systematically
with product-level characteristics that proxy for these costs. Specifically, we regress the
estimated γv on measures of product substitutability (e.g., demand elasticity σv), market
thickness (number of buyers and sellers), and transaction frequency.

Our findings, previewed in Tables 5 and 6, show that market power measures have
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minimal explanatory power, that intra-firm and arm’s-length transactions exhibit similar
discounts, and that γv correlates most strongly with cost-side factors and product substi-
tutability—consistent with the interpretation that γi→j,v ≈ γc

v and γ
µ
i→j,v ≈ 0.

Table 5: Decomposition of Price Variation by Interaction Term

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable log pi→j,t,v

Independent Variable log q× log q× log q× log q× log q× log q× log q× log q× log q×
Related log(qij) log(qi) log(qj) Output Share Input Share Rel. Length HHI Seller HHI Buyer

Panel A: Homogeneous Interactions

Coefficient -0.010 0.000522 0.000449 0.000418 0.00163 -0.0104 0.000609 -0.0169 -0.00751
(0.00420) (0.000195) (0.000187) (0.000165) (0.00222) (0.00402) (0.000452) (0.00779) (0.00634)

Within R2 0.0001 0.000197 0.000153 0.000157 0.0000106 0.000184 0.0000313 0.000175 0.000045

Panel B: Heterogeneous Interactions

Mean Coef. 0.004 0.028 0.036 0.036 0.035 -0.0416 0.005 -0.202 -0.100
Median Coef. -0.016 0.0195 0.021 0.021 -0.0226 -0.051 0.000 -0.072 -0.048
Variance Coef. 0.346 0.0833 0.0896 0.0896 1.05 0.34 0.129 0.866 1.15
99% Interval (lower) -0.441 -0.0397 -0.0439 -0.0439 -0.707 -0.363 -0.00864 -1.01 -0.635
99% Interval (upper) 0.346 0.0833 0.0896 0.0896 1.05 0.34 0.129 0.866 1.15

Controls
Variety Specific Quantity Discounts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fixed Effects
Buyer-Seller-Variety ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Seller-Month-Variety ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports regressions of transaction-level prices on log quantity interacted with various
relationship characteristics, while controlling for buyer-seller-variety fixed effects and seller-month-variety
fixed effects. Each column represents a separate regression where the dependent variable is the interaction
of log quantity with a specific characteristic. Standard errors are in parentheses. Panel A presents results
from a pooled specification, while Panel B estimates separate regressions for each HTS 6-digit variety in
an IV framework. The market power measures include related party status (Column 1), log relationship
quantity (Columns 2-4), output and input shares (Columns 5-6), relationship length (Column 7), and
HHI-based seller and buyer concentration (Columns 8-9).

5.1 Common Cost and Markup Structures

We first test if heterogeneity in quantity discounts γi→j,v correlates with market power,
before we consider if there is a common markup component γ

µ
v . We estimate:

log pi→j,t,v = log p̃i→j,v + γcommon
v log qt + βΓi,j,v log qt + ϵi→j,t,v, (13)

where Γi,j,v represents relationship-specific deviations proxied by market power mea-
sures.

Table 5 presents the results. Panel A reports pooled specifications in the baseline
framework; Panel B estimates separate regressions for each HTS 6-digit variety in the
IV framework. Each column and row corresponds to a different market power mea-
sure, including vertical integration (related party status), bilateral market shares(the share
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of quantity bought and sold), relationship size (total quantity purchased), relationship
length, and seller/buyer concentration (HHI weights, or squared market shares).

Panel A reports the results from the pooled specification. Across all specifications,
market power measures have negligible explanatory power, and often with the ”wrong”
sign.

Columns 3 and 4 consider the aggregate size of the seller (log qi) and buyer (log qj). We
find that larger parties face slightly flatter discount schedules (positive interaction coef-
ficients), a result that directly contradicts the view that ”power buyers/sellers” leverage
their absolute size to negotiate steeper marginal discounts.

Columns 5 and 6 examine bilateral dependence: the share of the seller’s output pur-
chased by the buyer (Output Share) and the share of the buyer’s inputs provided by
the seller (Input Share). Dependence forces might suggest that a buyer who purchases
a seller’s entire output (Output Share ≈ 1) or a seller who provides a buyer’s entire in-
put (Input Share ≈ 1) would negotiate different terms. However, estimating these in-
teractions yields economically trivial coefficients (0.0016 and -0.0104 respectively). Since
shares range from 0 to 1, even a fully dependent buyer faces a discount schedule nearly
identical to one with negligible dependence.17

Finally, Columns 8 and 9 interact quantity with market concentration measures (HHI).
While price discrimination theory suggests monopolists might employ steeper discount
schedules to screen customers, we find coefficients of only -0.017 (Seller HHI) and -0.008
(Buyer HHI). Directionally, these signs suggest slightly steeper discounts in concentrated
markets, but the magnitude is economically insignificant—shifting the elasticity by less
than 0.02 from perfect competition to monopoly.

Panel B confirms this with independent regressions across HS 6-digit codes. While
there is heterogeneity across products (as seen in the variance of the coefficients), me-
dian interaction effects are consistently close to zero. For example, the median coefficient
for the interaction with ‘Output Share‘ is -0.023, and for ‘Input Share‘ is -0.051. This
lack of systematic variation suggests that heterogeneous markup behavior, γ

µ
i→j,v, is not

a significant driver of quantity discounts. However, the vast majority of these results are
statistically insignificant at conventional levels. 18

This supports the interpretation that the common component γcommon
v primarily re-

flects cost-based scale economies rather than heterogeneous price discrimination across

17We avoid mixing revenue-based and quantity-based shares as regressors. Since log p = log(revenue)−
log(quantity), this creates mechanical correlation between the dependent variable and regressors.

18Relationship size and length (Antras and Helpman, 2004) show similar patterns: larger and longer-
lived relationships exhibit marginally smaller quantity discounts, but these effects remain economically
modest and add minimal explanatory power beyond the baseline average quantity discount (Col 7).
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relationships.
In Appendix B.2, we go a step further and recover a unique scale elasticity for every

buyer-seller pair, rather than just interacting a common elasticity with relationship char-
acteristics. We then regress these relationship-specific elasticities on measures of market
power, including bilateral volume and market shares. Consistent with the interaction re-
sults, we find no significant correlation, reinforcing the conclusion that quantity discounts
are not driven by relationship-specific markup variations. While buyers and sellers with
and without market power have similar scale elasticities, they may have different reasons;
there may be offsetting markup and cost effects. We explore this next.

5.2 Offsetting Effects and Common Costs

Could firms with market power have steeper markup schedules (γµ) but flatter cost
curves (γc), masking heterogeneity? We test this using vertical integration, where intra-
firm transfer prices often reflect costs, providing a benchmark for γc

v.
Table 5, Column 1 shows related-party status in Customs data has a negligible effect

(1 percentage point). Intra-firm and arm’s-length transactions exhibit nearly identical
discount schedules.19

Relaxing to buyer-variety and seller-variety FE confirms buyers face similar discounts
from both related and non-related sellers. This supports the interpretation that γ primar-
ily captures common cost structure γc

v, not heterogeneous markups γ
µ
i→j,v.

5.3 Market-Level Variations and Search Costs

We next examine cross-market patterns by regressing the estimated quantity discount γv

on market characteristics.
If discounts were driven by market-wide markup variation (γµ

v ), we would expect
them to be larger in less competitive markets. To test this, we regress the estimated quan-
tity discount γv on various market-level characteristics Yv:

γcommon
v = αYv + ϵv, (14)

where γcommon
v is the recovered quantity discount variety v which indexes a particular

variety v.

19While transfer pricing is subject to tax incentives, identical slopes would require an improbable coinci-
dence of tax strategies matching logistic economies.
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Table 6 considers measures of market concentration (HHI) and market thickness (num-
ber of buyers/sellers or buyer-seller pairs) and results in a clear pattern: concentrated
markets feature significantly shallower quantity discounts. The positive coefficients on
HHI (0.193 for sellers, 0.15 for buyers in Columns 1 and 2) imply that moving from a
competitive market to a monopoly/monopsony moves the elasticity γ toward zero (flat-
tening the curve).

This result contradicts both standard monopoly and monopsony explanations for price
discrimination. If powerful sellers used quantity discounts to screen buyers and extract
surplus (second-degree price discrimination), we would expect steeper discount sched-
ules in concentrated markets to disincentivize arbitrage. If powerful buyers used leverage
to demand bulk discounts (”power buyer” effects), we would expect steeper discounts in
markets with concentrated buyers. Instead, the steepest discounts are found in the most
competitive and fragmented markets. This aligns with a cost-based view where com-
petitive pressure forces firms to pass on the full extent of logistic scale economies (γc)
to buyers, whereas imperfect competition may dampen this pass-through, resulting in
flatter pricing schedules.

In contrast, while the standard demand substitutability proxy (demand elasticity σ)
offers little explanatory power, proxies for search costs are informative. Markets with
more elastic demand (higher σ) exhibit little to no change in quantity discounts in our
preferred IV specification (Panel B, Column 8). This null result implies that the demand-
side environment has no bearing on the discount schedule, contradicting markup-driven
explanations. Instead, the discount schedule appears invariant to demand conditions,
consistent with a universal cost-based mechanism where standardized goods share simi-
lar logistic scale economies regardless of substitutability.

Column (9) shows that markets with greater price dispersion, a proxy for search or
transaction frictions, exhibit larger discounts. This finding points towards an alternative
mechanism rooted in search and transaction costs. When buyers face fixed costs to find
and vet suppliers, or when sellers face fixed costs per transaction, quantity discounts
naturally arise as a way to amortize these costs over larger orders. This creates a form of
scale economy, either on the buyer’s side (search) or the seller’s side (transaction). Such
a mechanism is consistent with our finding that discounts are larger for less substitutable
products, where search costs are likely to be higher.

However, a pure search cost story has trouble explaining the uniformity of discounts
within relationships. If search costs are paid upfront to establish a relationship, we would
expect the scale elasticity γ to be smaller for subsequent, within-relationship transactions.
Our finding that γ is stable and significant even within long-term relationships suggests
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Table 6: Quantity Discounts and Across Market Variation

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable Quantity Discount γv

Independent Variable HHI Seller HHI Buyer log(Buyers) log(Sellers) log(Pairs) log(Trans.) log(Value) Demand log(σ) Variance(P̃)

Panel A: Dependent Variable: OLS Scale Parameter by HTS-6 Code; γOLS
v

Coefficient 0.0892 0.0904 -0.015 -0.0101 -0.00904 0.00138 0.00156 -0.0141 -0.154
(0.0453) (0.0378) (0.00638) (0.00594) (0.00594) (0.00500) (0.00508) (0.00543) (0.0128)

R-squared 0.002 0.002 0.004 0.002 0.002 0 0 0.002 0.086

Panel B: Dependent Variable: IV Scale Parameter by HTS-6 Code; γIV
v

Coefficient 0.193 0.15 -0.0355 -0.0283 -0.025 -0.00867 -0.0104 0.000773 -0.199
(0.0679) (0.0485) (0.00687) (0.00618) (0.00542) (0.00713) (0.00716) (0.00903) (0.0208)

R-squared 0.001 0.001 0.003 0.002 0.002 0.000 0.000 0.000 0.008

Notes: This table reports regressions of market-level characteristics on quantity discounts. The dependent
variable in both panels is the estimated quantity discount parameter γv at the HTS-6 code level. Panel A
uses the OLS estimate of γv, while Panel B uses the IV estimate. Each column regresses γv on a different
market-level characteristic. Heteroskedastic standard errors are in parentheses.

that per-transaction fixed costs (e.g., for logistics, invoicing, or quality verification) are
a more likely driver than initial search costs. As further evidence, Column (9) shows
that markets with greater price dispersion—a common proxy for higher search frictions
(Marshall, 2020)—exhibit significantly larger quantity discounts, consistent with a model
where transaction costs are a key determinant of the pricing schedule.

5.4 Shipping and Transportation Costs

A key advantage of the import data is that it separately reports shipping and freight
charges, allowing us to directly test for scale economies in a major component of transac-
tion costs. If the overall quantity discounts we observe are driven by cost-side factors, we
should see similar patterns in these observable cost components.

Table 7 confirms this prediction. We find substantial scale economies in shipping: re-
gressing the log of per-unit freight costs on the log of transaction quantity, within a buyer-
seller-variety relationship, yields a scale elasticity of -0.383 (Column 5). This means a 10%
increase in shipment size is associated with a 3.8% decrease in per-unit shipping costs.
While declared shipping charges are only 3-5% of overall transaction values, this is quali-
tatively consistent evidence of physical scale economies. It supports an interpretation that
the overall quantity discount schedule is driven by real cost factors rather than markup
adjustments.20 This aligns with evidence that the technology of international transport is

20We leave the study of shipping scale to future work, tying in with both market power and economies
of scale, as in Ignatenko (2020); Ganapati, Wong, and Ziv (2024).
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characterized by significant increasing returns to scale (Hummels, Lugovskyy, and Skiba,
2009; Ganapati et al., 2024), providing a physical underpinning for the cost gradients we
observe.

This elasticity is robust across specifications. Columns (4) and (5) control for the mode
of transport (e.g., air, containerized sea, bulk carrier, land), isolating scale economies from
differences in shipping technology. Our preferred specification in Column (5), which in-
cludes relationship, country-variety, and mode fixed effects, confirms a strong and sig-
nificant elasticity of -0.383. Column (6) allows this elasticity to vary by country-variety;
the mean elasticity remains large at -0.355, with a standard deviation of 0.381 across vari-
eties (in brackets), indicating that while there is heterogeneity, shipping scale economies
are a pervasive feature. The results are also robust to alternative measures of transaction
size. Using shipment weight in kilograms instead of standardized quantity units yields
a nearly identical elasticity of -0.378 (Column 7). Using shipment value yields a smaller
but still significant elasticity (Column 8). This consistent pattern across different mea-
sures and controls provides strong, direct evidence for cost-based scale economies in a
key component of transaction costs.

Table 7: Decomposition of Shipping and Other Charges

(1) (2) (3) (4) (5) (6) (7) (8)
log
(

Charges
q

)
log
(

Charges
kg

)
log
(

Charges
Value

)
log q -0.508 -0.403 -0.377 -0.481 -0.383 -0.355

(0.000126) (0.000116) (0.000155) (0.000122) (0.000109) [0.381]
log kg -0.378

(0.000133)
log Shipment Value -0.168

(0.000159)
log q× -0.0577
Related Parties (0.000232)

R2 0.766 0.932 0.934 0.854 0.95 0.784 0.683 0.489
Within R2 0.219 0.185 0.188 0.215 0.196 * 0.128 0.0189

Fixed Effects
Country-Variety ✓ ✓ ✓ ✓ ✓ ✓
Relationship ✓ ✓ ✓
Mode ✓ ✓

Notes: This table decomposes various measures of shipping charges. See text for details. Parentheses repre-
sent standard errors, and brackets represent the standard deviation of estimations across HS codes.

5.5 Discussion

The evidence strongly supports a cost-based explanation. While observable shipping
charges (freight) only account for a portion of the value, they crucially reveal that the tech-
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nological elasticity of logistics is large (≈ −0.38). Similar scale economies may apply to
unobservable order-level costs, such as batch production setups, warehousing handling,
and administrative processing (Arrow et al., 1951). For example, if internal batch-level
costs share the same physics as external freight, they would generate the large aggregate
discounts we observe. Conversely, if the remaining discount were markup-driven, we
would expect it to vary with market power, which it does not.

The key empirical finding is not that we can fully explain γv, but that the explainable
variation aligns with cost-side rather than demand-side factors. Furthermore, the direct
evidence from shipping costs (Table 7), which are observable and unambiguously cost-
driven, provides the strongest single piece of evidence for our interpretation.

The scale elasticity is a market-wide feature, common to all transactions, rather than a
tool for price discrimination. We conclude that the firm-to-firm quantity discount elastic-
ity is well-approximated by a market-level cost component: γi→j,v ≈ γc

v, with γ
µ
i→j,v ≈ 0.

Furthermore, we will conduct robustness in which we attribute all quantity discounts to
markup variation.

Our finding allows us to decompose observed prices into two distinct components: a
cost-driven scale effect (γ) and a residual ”scale-free” price level (p̃). In the next section,
we analyze the behavior of this residual price level to distinguish between market power
and aggregate scale economies. This decomposition is crucial for understanding tariff
pass-through (Section 7).

6 Aggregate Implications

Since transaction-level quantity discounts are primarily cost-driven (γ ≈ γc), we can iso-
late a ”scale-free” price, p̃i→j,v, representing the price level net of transaction-size effects.

6.1 The Determinants of Scale-Free Prices

Relationship Scale Economies Do transaction-level economies aggregate to the firm or
relationship level? Recent policy literature often estimates scale economies at the firm
or higher levels (Lashkaripour and Lugovskyy, 2023; Bartelme et al., 2025; Farrokhi and
Soderbery, 2020; Duarte, Magnolfi, Quint, Sølvsten, and Sullivan, 2025). Going beyond
correlations, we test whether large buyers pay lower prices because of aggregate volume
(firm scale) or simply because they make larger individual shipments (transaction scale).

We employ a first-difference strategy using 2011-2012 data to identify the relationship-
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level supply elasticity:

∆ log p̃i→j,v = β∆ log qi→j,v + FEi,v + ϵij, (15)

where ∆ log qi→j,v is the change in total quantity purchased by buyer j from seller i. We
control for seller-variety fixed effects (FEi,v) to account for supply-side shocks. We in-
strument for the change in quantity using a shift-share instrument based on aggregate
demand shocks in downstream industries.21

Table 8 compares regressions using raw average prices (∆ log p) versus scale-free prices
(∆ log p̃).

When using raw prices (Columns 1, 3, 5, 7), we find a significant negative relationship
between price and quantity, suggesting a level of aggregated scale economies. However,
when we use the scale-free price p̃ (Columns 2, 4, 6, 8), this relationship largely disappears
or is substantially attenuated. This implies that apparent aggregate scale economies are
a mechanical reflection of transaction-level discounts. Large buyers pay less primarily
because they transact in larger batches.

Our estimates align with Lashkaripour and Lugovskyy (2023) who find aggregate
scale of γ ≈ 0.2 in Colombia, and with Bartelme et al. (2025) who find scale of γ ≈ 0.2
globally. Macroeconomic models assuming firm-level scale economies may mis-specify
the mechanism if the true driver is at the transaction-level. We replicate these findings
with domestic data in Appendix C.2.1. In Appendix B.5, we also decompose scale-free
prices in the cross section.

Validating the Decomposition If our decomposition is correct, ”level” effects like mar-
ket power may reside in p̃, not γ. Table 9 confirms this. This is consistent with the lit-
erature on how there is wide variation in both how exporters react to various shocks
(Berman, Martin, and Mayer, 2012) and in what determines price variation across re-
lationships (Manova and Zhang, 2012; Kugler and Verhoogen, 2012; Basu and Fernald,
1997).

Panel A shows correlations between prices and measure of market power within Variety-
Country. Panel B shows the same correlations with more demanding fixed effects. De-
pending on the specification, there are seller-variety and/or buyer-variety-country fixed
effects.

Unlike the discount elasticity, the scale-free price p̃ is significantly correlated with bi-
lateral market shares and seller concentration. Market power shifts the intercept of the

21Given what we have disclosed from Census we use 2011-2012 data here instead of 2016-2017.
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Table 8: Relationship Scale Economies - Bilateral Price Changes

(1) (2) (3) (4) (5) (6) (7) (8)
∆ log p ∆ log p̃ ∆ log p ∆ log p̃ ∆ log p ∆ log p̃ ∆ log p ∆ log p̃

∆ log q -0.209 -0.0225 -0.222 -0.0229 -0.193 -0.0184 -0.115 -0.00114
(0.005) (0.001) (0.006) (0.001) (0.006) (0.001) (0.04) (0.002)

N 230000 230000 230000 230000 148000 148000 148000 148000
r2 0.353 0.187 0.527 0.419 0.527 0.431 0.153 0.0005
Within r2 0.197 0.006 0.21 0.006 0.182 0.004

Fixed Effects
Country-Variety ✓ ✓
Seller-Variety ✓ ✓ ✓ ✓ ✓ ✓

First Stage F 1000
Instruments ✓ ✓
IV Sample ✓ ✓ ✓ ✓

Notes: This table reports regressions of the change in aggregate quantities on the change in price. Odd
columns use aggregate prices (∆ log p). Even columns use the scale-free price (∆ log p̃), which adjusts for
transaction-level quantity discounts. The last two columns instrument for the change in quantity using the
shift-share instrument described in the text.

pricing schedule but does not alter its slope. Large firms may negotiate lower base prices,
but the marginal incentive regarding shipment size is determined by common technolog-
ical factors.

6.2 From Micro-Scale to Macro-Pass-Through

Our analysis reveals a stark divergence between reduced-form and structural interpre-
tations of price data. At the micro-level, we find that ”scale economies” are largely a
phenomenon of shipment size rather than firm size. At the macro-level, this distinction is
critical for understanding the incidence of trade shocks.

If scale economies were driven by firm-level market power or aggregate production
functions, a tariff shock might be absorbed by a reduction in firm-level markups or a
movement along a firm-level cost curve. However, these scale economies can be driven
by transaction-level logistics (e.g., fixed ordering costs), not firm-level production func-
tions. As tariffs raise the holding cost of inventory, firms optimally reduce their order
sizes. This reduction in transaction size forces buyers up the quantity discount sched-
ule. Consequently, observed unit prices rise for two distinct reasons: the direct cost of
the tariff, and the mechanical loss of scale economies. Standard pass-through estimates
conflate these two effects, mistakenly attributing the mechanical price increase to strate-
gic pass-through. In the next section, we show that once we correct for this mechanical
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Table 9: Scale-Free Price Level Variation

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable log( p̃)
Independent Variable Related log(q) log(q) log(q) Output Input log(Rel) log(Sellers) log(Buyers)

Party Relationship Seller Buyer Share Share Length

Panel A: Baseline Level Effects

Coefficient 0.0555 -0.172 -0.137 -0.0877 -0.154 -0.125 0.000909 0.0175 0.033
(0.00437) (0.00292) (0.00238) (0.00178) (0.00555) (0.00538) (0.00153) (0.00270) (0.00411)

R2 0.0863 0.217 0.177 0.133 0.0887 0.0878 0.086 0.0863 0.0864
Within R2 0.000425 0.144 0.0995 0.0514 0.003 0.00206 0.000000706 0.000429 0.000546

Fixed Effects
Product-Country ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Panel B: Complex Fixed Effects

Coefficient -0.011 -0.0289 -0.0501 -0.0281 -0.131 -0.0454 -0.000676 -0.0169 0.0162
(0.00250) (0.00152) (0.000860) (0.000724) (0.00646) (0.00516) (0.00254) (0.00140) (0.00140)

R2 0.854 0.855 0.686 0.749 0.854 0.854 0.854 0.747 0.68
Within R2 0.000123 0.009 0.0189 0.00732 0.00342 0.000866 0.000000189 0.000655 0.0002

Fixed Effects
Seller-Variety ✓ ✓ ✓ ✓ ✓
Buyer-Variety-Country ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports regressions of the scale-free price level on various relationship and market char-
acteristics. Panel A includes product-country fixed effects. Panel B includes more complex fixed effects,
including seller-variety and buyer-variety-country fixed effects. Standard errors are in parentheses.

”scale effect,” the true pass-through of the 2018-2019 US tariffs is significantly lower than
previously thought.

7 Tariff Pass-Through

Cost-driven (γ ≈ γc) quantity discounts fundamentally alters the interpretation of ag-
gregate price movements. In standard models, incomplete pass-through implies markup
compression. Our results suggest a countervailing force: if tariffs reduce trade volumes,
they push firms up their average cost curves, mechanically raising unit prices.

This implies that standard estimates of unit-value pass-through do not alone measure
incidence. A tariff-induced price increase could reflect two distinct phenomena: the tax
itself, or the loss of scale economies due to shrinking transaction sizes. By failing to ac-
count for the latter, we risk underestimating if foreign firms are actually cutting markups
(or scale-free prices) to maintain market share, hiding a substantial welfare loss borne by
foreign exporters.
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Table 10: Summary of US Import Data

Origin Year Value (FOB) Duty Shipping Charges Tariff Rate Shipping Rate

(Billion USD) (Applied %) (Effective %)

All 2017 1,796 29.1 52.0 1.6% 2.9%
All 2018 2,005 42.9 57.2 2.1% 2.9%
All 2019 2,274 64.8 63.2 2.9% 2.8%
All 2020 2,316 56.5 67.1 2.4% 2.9%

China 2017 363 11.6 14.3 3.2% 3.9%
China 2018 398 19.6 16.5 4.9% 4.1%
China 2019 425 40.2 17.4 9.5% 4.1%
China 2020 460 37.0 20.5 8.0% 4.5%

Other 2017 1,434 17.5 37.7 1.2% 2.6%
Other 2018 1,606 23.3 40.7 1.5% 2.5%
Other 2019 1,848 24.6 45.8 1.3% 2.5%
Other 2020 1,855 19.5 46.6 1.1% 2.5%

Notes: Data are from the US Census LFTTD and cover US imports exceeding the de minimis threshold.
Value (FOB) is the free-on-board value of imports. Duty is the total customs duties paid. Shipping Charges
include freight and insurance costs. The Tariff Rate is the applied rate, calculated as Duty divided by Value.
The Shipping Rate is calculated as Shipping Charges divided by Value.

7.1 2018–2019 US Tariffs

The 2018–2019 trade war provides a quasi-experiment for studying tariff pass-through.
During this period, the United States imposed substantial tariffs on a wide range of im-
ported goods, with a primary focus on products originating from China. The aggregate
impact of these tariffs is evident in Table 10. Total duties collected on US imports more
than doubled from $29.1 billion in 2017 to $64.8 billion in 2019, raising the average applied
tariff rate from 1.6% to 2.9%. The burden fell disproportionately on imports from China,
where the average tariff rate nearly tripled from 3.2% to 9.5% over the same period. In
contrast, the average tariff rate on imports from the rest of the world remained stable at
around 1.3%.

The standard approach to measuring tariff pass-through treats observed unit price
as the relevant object for welfare analysis. However, when transaction-level quantity dis-
counts are pervasive, this approach conflates two distinct effects: changes in the scale-free
price schedule p̃ and compositional shifts in transaction sizes. Our framework from Sec-
tion 2.2 clarifies this distinction. The total change in observed prices reflects both the shift
in the underlying cost and markup structure (captured by dp̃/d(1 + τ)) and the adjust-
ment in transaction quantities (captured by γ · dq/d(1 + τ)). Moreover, to measure ag-
gregate pass-through, we must aggregate transaction-level prices to construct unit values,
accounting for both the intensive margin (changes in the size of existing transactions) and
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the extensive margin (entry and exit of trading relationships). Only by separating these
components can we accurately measure the division of the tariff burden between buyers
and sellers.

This distinction matters fundamentally for incidence. As we showed in our concep-
tual framework, the change in buyer surplus depends on shifts in the scale-free price p̃
weighted by quantities purchased (Equation (2)), while changes in producer surplus re-
quire decomposing both revenue and cost effects (Equation (3)). When transaction sizes
decline in response to tariffs—as our data show they do—standard measures of pass-
through will overstate the extent to which sellers can shift the tariff burden to buyers.
This is because smaller transactions occur at higher unit prices due to scale economies,
creating the appearance of greater pass-through even when the underlying price sched-
ule has shifted down substantially.

Our empirical strategy leverages the transaction-level variation we document to con-
struct scale-free price measures (an implicit unit-value price index). By recovering the
scale elasticity γ from within-relationship variation (Section 4.2) and using it to compute
scale-free prices p̃, we isolate the true shift in the price schedule from compositional ef-
fects. This allows us to decompose the incidence of the 2018 tariffs into three compo-
nents: the mechanical effect of the tariff itself, the adjustment in seller markups and costs
(captured by changes in p̃), and the quantity response both at the transaction level and
through entry and exit. Our findings reveal that accounting for transaction-level scale
economies reduces estimated pass-through from near unity to approximately 60 percent,
implying that foreign exporters absorbed a substantially larger share of the tariff burden
than conventional estimates suggest.22

Essentially, we empirically differentiate reduced-form versus structural estimates of
pass-through (MacKay, Miller, Remer, and Sheu, 2014). We do find that at both the ag-
gregate and transaction level, we can match the reduced-form findings of the literature
(Fajgelbaum et al., 2020). Considering an aggregate variety, US tariffs on imports exhibit
close to full reduced-form pass-through of tariffs to unit wholesale prices. This not only
is at the aggregate-level, but also at the bilateral buyer-seller-variety level (Handley, Ka-
mal, and Monarch, 2025). However there are large quantity responses, not just from the
aggregate demand curve, but also in the size of individual transactions.

Empirical Framework for Tariff Pass-Through with Transaction-Level Scale Economies.
At the transaction level, we start off with the tariff-inclusive transaction price within a re-

22Unlike our main regressions where prices were demeaned, here we keep them at their initial levels.
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lationship:

log pi→j,t,v = log (1 + τt,v) + log µi→j,t,v + log c̃i→j,t,v︸ ︷︷ ︸
log p̃t,v

+ γ log q. (16)

Prices are a combination of tariffs (ad-valorem), scale-free markups and marginal costs,
and a final scale effect. From the analysis in Section 3, we show that this scale effect is
driven by underlying costs and we will consider them invariant to tariff levels.23

For any given transaction t from seller i to buyer j at date d, as shown in section 4.2,
there is a scale pricing elasticity γ. When considering tariffs, tariffs have log-separable
effects on duty-inclusive prices:

∂ log pi→j,t,v (q)
∂ log (1 + τt,v)

= 1 +
∂
[
log µi→j,t,v + log c̃i→j,t,v

]
∂ log (1 + τt,v)︸ ︷︷ ︸

ρ̃=∂ log p̃/∂ log(1+τ)

+ γ
∂ log q

∂ log (1 + τt,v)
. (17)

The first element on the right-hand side is the effect of a tariff on a scale-independent
price. This can be further decomposed into a markup effect µ, and a scale-free cost effect
c̃. The second element is the effect of a tariff on the scale of an individual transaction.24

7.1.1 Within-Relationship Transaction-Level Pass-Through

Looking at data on tariffs imposed by the US on its own imports, Table 11 shows the
results of considering Equation (17). We consider prices, not only within a buyer-seller-
variety relationship, but relative to variety-time trends (to partially account for the supply
shock effect in Gertler (2023) and the diversions seen in Fajgelbaum, Goldberg, Kennedy,
Khandelwal, and Taglioni (2024) and Farrokhi and Soderbery (2020).

Column (1) shows that the pass-through of tariffs to observed transaction prices in
2018 is nearly complete, with a coefficient of 0.956. This finding, which aligns with the
reduced-form results in the literature, suggests that for every 10% increase in the tariff
rate, the post-tax price paid by the buyer increases by almost 10%. However, this masks
a significant quantity response. Column (5) reveals that a 10% tariff rate increase leads to
a 6% decrease in the size of individual transactions.25

23Table 15 shows that γ is invariant to tariffs.
24Decomposing incomplete pass-through—distinguishing between costs, markup adjustment, and me-

chanical invoicing effects—is a focus of the exchange rate literature (Goldberg and Hellerstein, 2008).
25In Appendix B.4, we replicate this analysis using the tariffs imposed by the US on consumer goods in

the last quarter of 2019, finding similar results. However, the estimates are noisier due to the shorter time
frame before the onset of the COVID-19 pandemic.
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Table 11: Transaction-level Tariff Pass-Through: Within Relationships

(1) (2) (3) (4) (5) (6)
log(p) log( p̃OLS) log( p̃IV) log(pq) log(q) log(p)

log(1+ Tariffs Applied) 0.956 0.780 0.800 0.357 -0.600
(0.0424) (0.0282) (0.0360) (0.0438) (0.0603)

log(1+ Tariffs Statutory) 0.920
(0.0417)

R2 0.965 0.967 0.996 0.725 0.912 0.965
Within R2 0.000746 0.000809 0.000358 0.0000486 0.000103 0.00045

Fixed Effects Buyer-Seller-Variety, Variety-Year-Month

Notes: This table reports transaction-level duty-inclusive tariff pass-through estimates for continuing buyer-
seller-variety relationships in 2018. All specifications include buyer-seller-variety and variety-year-month
fixed effects. Standard errors are clustered at the relationship level. Column (1) shows the pass-through
of applied tariffs (duty paid) to observed transaction prices. Columns (2) and (3) report pass-through to
scale-free prices (p̃), constructed using the OLS and IV estimates of the scale elasticity γ from Section 4.2,
respectively. These columns isolate the change in the price schedule from compositional effects. Column
(4) reports the effect on transaction value, while Column (5) shows the response of transaction quantity.
Column (6) shows the pass-through of statutory tariffs.

Our framework allows us to disentangle these effects. Columns (2) and (3) report the
pass-through to the scale-free price, p̃, which isolates the shift in the underlying price
schedule. Using our preferred IV estimate for the scale elasticity, we find that the pass-
through to the scale-free price is only 0.80 (Column 3). This implies that the composite of
seller markups and costs fell by 20% in response to the tariff. If we assume that marginal
costs for a standardized order size did not decrease, this suggests that foreign exporters
absorbed a significant portion of the tariff burden by reducing their markups. Had trans-
action sizes not fallen, the observed pass-through would have been only 80%, below the
near-unity estimates that ignore quantity adjustments. This highlights a key difference
from frameworks like Fajgelbaum et al. (2020), which, by assuming perfect competition
and no quantity discounts (γ = 0), would interpret the full price increase as being borne
by US buyers.

The decomposition in Equation (17) provides a clear interpretation of these results.
The coefficient in Column (1) represents the total pass-through to the observed price,
∂ log p/∂ log(1 + τ). The coefficient in Column (3) is the pass-through to the scale-free
price, ∂ log p̃/∂ log(1 + τ). The difference between these two, 0.956 − 0.800 = 0.156,
represents the quantity adjustment effect, γ · ∂ log q/∂ log(1 + τ). Using our estimated
γ of -0.29 and the quantity response from Column (5) of -0.604, this effect is (−0.29) ×
(−0.600) = 0.174, which closely matches the observed difference. Furthermore, the pass-
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through to the scale-free price can be decomposed into the mechanical tariff effect (1)
and the change in the composite of seller markups and costs. The estimate of 0.8 implies
that this composite fell by 20 percent (0.8− 1 = −0.2), indicating that foreign exporters
absorbed a substantial portion of the tariff by reducing their pre-tax prices.

However, these results are based on continuing relationships and thus only capture
the intensive margin of adjustment among stable relationships. Essentially, this is pass-
through conditional on survival and constant order frequency and not an estimate of
aggregate pass-through. To assess the full welfare incidence of the tariffs, we must aggre-
gate these transaction-level findings to account for compositional changes.

7.1.2 Aggregate Pass-through

Moving beyond transaction-level pass-through, we now examine how quantity discounts
affect aggregate unit values—the standard object used in prior tariff incidence studies.
Aggregation introduces two key margins of adjustment: the intensive margin (changes
in transactions and transaction sizes within and across continuing relationships) and the
extensive margin (entry and exit of trading relationships). To properly measure aggregate
pass-through, we must account for both how the scale-free price p̃ shifts in response to
tariffs and how the composition of transactions changes. We present two complementary
approaches: first, a scale-free aggregation that uses our estimated scale elasticity γ to
construct standardized unit values from transaction-level data; and second, a first-order
approximation using only aggregate data that yields quantitatively similar results and
can be implemented without access to microdata.

We aggregate these scale-free prices across all transactions for a given product-origin-
date combination, weighting by transaction quantities to obtain an aggregate scale-free
unit value p̃o,d,v, from origin country o to the destination d (the US in our case) for variety
v. This approach allows us to isolate the shift in the underlying price schedule from
compositional changes in transaction sizes and counts.

To construct scale-free unit values, we follow two steps. We first adjust transaction-
level prices to remove the effect of quantity discounts using our estimated scale elasticity
γv. This yields a scale-free price p̃i→j,t,v for each transaction that reflects what the price
would be if the transaction size were one unit:

p̃i→j,t,v =
pi→j,t,v

qγv
i→j,t,v

, (18)
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where γ is recovered through the mechanism in section 4.2.26

We create a duty-inclusive unit value in the spirit of aggregate regressions in Fajgel-
baum et al. (2020); Amiti et al. (2019):

po,d,v = ∑
i∈o,t∈d

pi→j,t,vqi→j,t,v/ ∑
i∈o,t∈d

qi→j,t,v. (19)

Our scale-free prices aggregates across all buyers and sellers, where shipment of variety
v originates in country o at date d, aggregated at the monthly level:

p̃o,d,v = ∑
i∈o,t∈d

p̃i→j,t,vqi→j,t,v/ ∑
i∈o,t∈d

qi→j,t,v. (20)

With this approach, we can decompose the duty-inclusive aggregate price for a prod-
uct as:

log po,d,v = log p̃o,d,v + log q̃o,d,v, (21)

where the residual q̃o,d,v captures the aggregate quantity composition effect. This term re-
flects how the distribution of transaction sizes affects the observed unit value, even hold-
ing the underlying price schedule p̃ fixed. The scale-free price p̃o,d,v can be interpreted
as the tariff-inclusive composite of scale-free markups and marginal costs: p̃o,d,v = (1 +

τo,d,v)(µc̃o,d,v), where µc̃o,d,v represents the quantity-weighted average of seller markups
and costs, net of tariff charges.

Table 12 regresses each of these components, both the left- and right-hand sides, on
changes in applied tariffs. We consider different levels of aggregation, the baseline in
Panel (A) considers just monthly 2018 data. We later consider robustness in Panels (B)-
(E), aggregating up to the yearly level.

Column (1) replicates the baseline findings, pass-through, not just at the transaction
level, but the product-origin level is effectively unity. Columns (2) and (3) adjust for quan-
tity discounts using our OLS and IV estimates for the scale elasticity γv within variety.

We can further use the difference between the aggregate un-adjusted regression in
column (1) with the scale-free results in columns (2)-(5) to consider the relative effects on
sellers. In our baseline comparing to our IV results, a 10% increase in tariffs decreases the
prices received by sellers by 4.0%. Without the scale adjustment, the prices would have
increased by 0.5%

The difference between the unweighted transaction-level estimate (0.80) and the volume-
weighted aggregate estimate (0.60) indicates that compositional effects are significant.

26Alternatively, we can use γi→j,v.
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Larger transactions, which benefit more from quantity discounts, tend to shrink more in
response to tariffs. This compositional shift amplifies the mechanical price increase due
to reduced transaction sizes, leading to a lower aggregate pass-through rate.

The microdata founded scale elasticities play a crucial role. But how important is
microdata for this exercise? As an alternative, we bound our results using a much more
straightforward decomposition, conditional on recovering scale elasticities from the micro-
data.

As an alternative to Equation (21), we can interpret results using a much more straight-
forward decomposition,

log po,d,v = log pqo,d,v − log q/To,d,v − log To,d,v, (22)

where T denotes the number of transactions. Here, we decompose the aggregate unit
value into three components: the total payments received by sellers for variety v from
origin o at date d (i.e., total revenue) denoted by pqo,d,v, the average order size captured
by q/To,d,v, and the number of transactions To,d,v.

Table 12 in columns (5-8) regresses tariff rates on each of these components. Column
(5) indicates a 10% increase in tariffs leads to an 8.7% decrease in payments. Column
(7) shows that a 10% increase in tariffs leads to a 15.5% decrease in average order size.
Column (8) shows that a 10% increase in tariffs leads to a 3.6% decrease in the number of
transactions.

In particular the second term, log q/To,d,v, is informative of the level of pass-through
netting out quantity changes, in combination with our γv from Section 4.2. As an ap-
proximation, if we assume the change in average order size is reflective of the weighted
average change in order size at the transaction level, we can use our earlier estimate of γ

to back out the change in scale-free prices:

d log p̃o,d,v

d log(1 + τo,d,v)
≈ d log po,d,v

d log(1 + τo,d,v)
−γ

d log (q/T)o,d,v

d log(1 + τo,d,v)
= 1.05− (−1.55) ∗ (−0.29) = 0.60.

Essentially, recovering columns (2)-(4) to a first order approximation. For a consistent
order size, tariffs are only passed through at the aggregate level at 60%.27 As with before,
we can decompose this into a tariff direct effect (mechanically 1) and a markup and cost
effect. If we assume that costs did not fall during the tariff war, then aggregate markups
fell 40%.

27Due to Jensen’s inequality, the logarithm of a sum is not the sum of a logarithm (as log is a concave
function), thus requiring the use of detailed transaction-level data.
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The discrepancy between the relationship-level pass-through (Table 11) and the ag-
gregate results stems from the extensive margin. As shown in Column (7), the number of
transactions declines significantly in response to tariffs. This reduction in order frequency,
combined with the reduction in order size, compounds the welfare loss. While continuing
relationships see a pass-through of roughly 0.80 to scale-free prices, the exit of relation-
ships and the consolidation of orders implies that the aggregate average unit value rises
by more than the intensive-margin estimate would suggest. This aligns with work em-
phasizing the extensive margin of global sourcing, where fixed costs of importing lead to
sensitivity in the measure of active suppliers (Antras, Fort, and Tintelnot, 2017).

Correcting for Quality For robustness, we also consider a Feenstra (1994)-style CES
price index within each origin-destination-variety combination to account for the exten-
sive margin of entry and exit. We use data on the elasticity of substitution from a struc-
tural model of supply and demand.

We construct an exact CES price index to account for substitution bias and variety
turnover (entry and exit). Using the Sato-Vartia index for continuing goods and the Feen-
stra adjustment for the extensive margin, we find that standard unit-value indices may
overstate inflation by failing to account for substitution towards cheaper varieties. How-
ever, for the medium-run pass-through estimates in Table 12 column (4), the divergence
between the CES index and our simple average is minimal, suggesting that substitution
bias is not the primary driver of our results at this horizon.

Event Horizons In Table 12 Panels (B)-(E), we consider different time periods and ag-
gregation horizons. We first include all data from 2017-2019 at the monthly level (B),
before aggregating to the quarterly (C) and year levels (D). Lastly we take the yearly data
from 2017 and do a two-year difference to 2019 (E).

Echoing the robustness of the unadjusted pass-through in Fajgelbaum et al. (2020), our
baseline results in column (2)-(4) adjusting our unit price indices for quantity discounts
are largely consistent across panels, with measured pass-through between 0.4 and 0.7,
with OLS scale elasticities at the higher end and the CES-adjustment at the lower end.

Decomposing Aggregate Pass-through In aggregate, pass-through is the combination
of multiple forces, the pass-through of continuing firms, and the net effect of entrants and
exiting relationships.

Here we focus on the medium-run difference. With most of the 2018 tariffs imple-
mented in September 2018 (and slowly adjusted until January 2019), we consider the
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Table 12: Decomposing Aggregate Tariff Pass-Through by Methodology and Time Period

(1) (2) (3) (4) (5) (6) (7) (8)
log(P) log( p̃γOLS) log( p̃γIV) log( p̃CES) log(Value) log(Q) log(Q/T) log(T)

Panel A: Monthly 2018 Data
log(1 + Tariffs) 1.047 0.804 0.604 0.573 -0.867 -1.914 -1.551 -0.362

(0.0546) (0.0414) (0.0447) (0.0418) (0.0709) (0.0897) (0.0755) (0.0394)

r2 0.919 0.942 0.951 0.951 0.876 0.888 0.913 0.918
Within R2 0.000478 0.000312 0.000223 0.000223 0.000155 0.000301 0.000757 0.000155

Panel B: Monthly 2017-2019 Data
log(1 + Tariffs) 1.038 0.547 0.537 0.504 -1.479 -2.517 -1.697 -0.820

(0.0302) (0.0226) (0.0238) (0.0466) (0.0415) (0.0526) (0.0424) (0.0258)

r2 0.897 0.927 0.938 0.686 0.861 0.891 0.88 0.897
Within R2 0.00065 0.000357 0.000278 0.000276 0.00125 0.00182 0.00111 0.00112

Panel C: Quarterly 2017-2019 Data
log(1 + Tariffs) 1.069 0.584 0.568 0.436 -1.669 -2.739 -1.751 -0.988

(0.0362) (0.0276) (0.0299) (0.0260) (0.0507) (0.0639) (0.0503) (0.0318)

r2 0.909 0.934 0.945 0.65 0.892 0.909 0.896 0.918
Within R2 0.000672 0.000386 0.000295 0.000456 0.00151 0.00205 0.00118 0.0014

Panel D: Yearly 2017-2019 Data
log(1 + Tariffs) 1.178 0.68 0.645 0.481 -2.032 -3.21 -1.886 -1.324

(0.0578) (0.0469) (0.0522) (0.0240) (0.0830) (0.104) (0.0809) (0.0528)

r2 0.937 0.954 0.962 0.578 0.934 0.94 0.928 0.949
Within R2 0.000808 0.000505 0.000367 0.000801 0.0021 0.00267 0.00138 0.00212

Panel E: Two Year Annual Change 2017 to 2019 Data
log(1 + Tariffs) 1.093 0.645 0.602 0.533 -2.189 -3.283 -1.737 -1.546

(0.0654) (0.0516) (0.0591) (0.0303) (0.0938) (0.118) (0.0891) (0.0630)

r2 0.949 0.963 0.969 0.544 0.938 0.947 0.939 0.95
Within R2 0.00105 0.000684 0.000471 0.00122 0.00321 0.00388 0.00172 0.00359

Fixed Effects Variety-Country Origin, Time-Month

Notes: This table reports aggregate tariff pass-through estimates at the origin-destination-variety level using
different methodologies and time periods. Each panel represents a different time aggregation: Panel A uses
monthly data from 2018, Panel B uses monthly data from 2017-2019, Panel C uses quarterly data from
2017-2019, Panel D uses yearly data from 2017-2019, and Panel E uses two-year changes from 2017 to 2019.
Column (1) shows the pass-through of applied tariffs to observed unit values. Columns (2) and (3) report
pass-through to scale-free unit values, constructed using the OLS and IV estimates of the scale elasticity
γv, respectively. Column (4) presents pass-through estimates using a CES price index to account for quality
adjustments. Columns (5) to (8) decompose the aggregate unit value into total value, total quantity, average
order size, and number of transactions. All specifications include variety-country origin and time-month
fixed effects. Standard errors are clustered at the variety-country origin level.

medium run difference between 2017 and 2019.28

In Table 13, we run effectively the same decomposition as in the previous subsection,
but in first differences, as there are only two periods. In Panel A, we consider continuing
trading partners that account for approximately 2/3 of trading volume. In this case, ag-

28This ignores the set of consumer products tariffed in late 2019 on the eve of the COVID-19 pandemic.
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gregate pass-through is only 0.87 (Col 1), with a large order size and order number effect
(Col 5-6). However, our scale-corrected pass-through estimates are .60 and .57 (Col 2-3).

Panel B considers the net effect of entrant and exiting trading pairs. Aggregate pass-
through, under the strict assumption of comparability, implies that pass-through is more
than full (1.2) for this set of firms (Col 1) with even larger large order size and order num-
ber effects (Col 5-6). But these differences with continuing relationship are minimized
when considering the scale-corrected pass-through estimates of .64 and .60 (Col 2-3).29

There are massive compositional changes induced by tariffs, but estimates correcting
for quantities aligned our estimates of pass-through between various samples.

Unification With Exchange Rate Pass-Through The nearly complete pass-through of
tariffs into aggregate unit import prices (Amiti et al., 2019; Fajgelbaum et al., 2020; Cavallo
et al., 2021) stands in stark contrast to the Exchange Rate Pass-Through (ERPT) literature,
which typically finds much lower pass-through rates into import prices, often in the range
of 0.4 to 0.6, even in the medium run (Gopinath et al., 2010). This discrepancy presents a
puzzle: why would foreign exporters absorb exchange rate shocks but fully pass on tariff
shocks?

A key distinction between these literatures lies in the data used. Tariff studies often
rely on customs unit values, which are calculated as total value divided by total quantity.
As we have shown, unit values mechanically incorporate changes in order size and the
resulting quantity discounts. In contrast, the ERPT literature, such as Gopinath et al.
(2010), typically utilizes BLS import price indices. These indices are constructed from
survey data that track the price of specific items over time, and in principle condition on
the quantity discount channel we highlight.30

When we correct for scale effects and isolate the ”scale-corrected” pass-through, anal-
ogous to controlling for item specifics and quantity, we estimate a pass-through rate of
approximately 0.60 - much closer to the standard ERPT estimates. The apparent differ-
ence between tariff and exchange rate pass-through may be driven by the measurement of
prices: unit values capture the endogenous response of quantities and discounts, whereas
price indices isolate the pure price change.

This lines up with literature that emphasizes strategic complementarities and vari-
able markups as the primary drivers of incomplete pass-through (Atkeson and Burstein,
2008; Amiti et al., 2014). Both tariff and exchange rate shocks affect the underlying cost

29These estimates use the same scale elasticities as in Panel A, which are derived from our within-
relationship IV estimates for γv.

30Although note that for their import price index, the BLS recently switched to using administrative trade
data for 40 percent of their sample (U.S. Bureau of Labor Statistics, 2025).
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structure of exporters, leading to adjustments in markups. When controlling for quantity
effects, both types of shocks exhibit similar pass-through patterns, suggesting that the
underlying market dynamics are consistent across these different types of trade shocks.

Table 13: Decomposing Medium Run Tariff Pass-Through

Panel A: Continuing Relationships from 2017 to 2019

(1) (2) (3) (4) (5) (6) (7)
log(P) log( p̃γOLS) log( p̃γIV) ∆ log(Value) ∆ log(Q) ∆ log(Q/T) ∆ log(T)

∆ log(Tariffs) 0.871 0.603 0.572 -0.861 -1.731 -0.73 -1.002
(0.0607) (0.0450) (0.0517) (0.0863) (0.104) (0.0763) (0.0672)

R2 0.129 0.123 0.126 0.127 0.133 0.125 0.136
Within R2 0.00189 0.00165 0.00113 0.000916 0.00254 0.000843 0.00204

Panel B: Other Firms

(1) (2) (3) (4) (5) (6) (7)
log(P) log( p̃γOLS) log( p̃γIV) ∆ log(Value) ∆ log(Q) ∆ log(Q/T) ∆ log(T)

∆ log(Tariffs) 1.222 0.637 0.6 -2.857 -4.079 -2.278 -1.801
(0.0964) (0.0697) (0.0779) (0.114) (0.155) (0.121) (0.0757)

R2 0.0887 0.0896 0.0846 0.119 0.112 0.0949 0.134
Within R2 0.00108 0.000559 0.000397 0.00421 0.00464 0.00238 0.00378

Fixed Effects Variety-Year

Notes: This table decomposes medium-run tariff pass-through by relationship status. Panel A reports es-
timates for continuing relationships. Panel B reports estimates for the net effect of entering and exiting
relationships. All specifications are in first differences between June 2018 and June 2019 and include variety-
year fixed effects. Standard errors are clustered at the variety-origin level.

7.2 Revisiting Incidence

Overall, using a conventional unit price index—as opposed to one adjusted for trans-
action quantities—would suggest near-complete pass-through. However, our scale-free
results indicate a net pass-through of approximately 50-60%, with the difference driven
by substantial decreases in average order size and the number of orders.

Having established that pass-through is incomplete and quantity responses are large,
we now combine these estimates to assess the overall welfare burden. We return to the
framework from Section 2.2. While a full welfare analysis typically requires a structural
supply and demand system, Weyl and Fabinger (2013) show that marginal effects can be
recovered using sufficient statistics. We extend this logic to our setting, incorporating the
imperfect competition wedges we have empirically identified.
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We model seller prices ps, revenues R, and costs C as:

ps =
p̃

1 + τ
qγc , R =

p̃
1 + τ

qγc+1, C = c̃qγc+1

Locally, the changes in revenue and cost with respect to tariffs are:

dR (q)
d (1 + τ)

=

[
d log p̃

d log (1 + τ)
+ (γc + 1)

d log q
d log (1 + τ)

− 1
]

R
1 + τ

dC (q)
d (1 + τ)

=

[
d log c̃

d log (1 + τ)
+ (γc + 1)

d log q
d log (1 + τ)

]
R

µ̃ (1 + τ)

Note that terms involving γµ drop out due to our finding that quantity discounts are
cost-driven (γµ ≈ 0). To complete this calculation, we need two additional pieces of
information: the elasticity of scale-free costs c̃ to tariffs, and the baseline level of markups
µ̃. In addition, we need to test the implicit assumption that γ is invariant to tariffs.

Elasticity of Scale-Free Cost to Tariffs Understanding how scale-free costs change due
to the trade war is not trivial. In principle, this needs to be known for every existing rela-
tionship. As we are primarily interested in incidence, we proceed under the assumption
that the level of marginal costs is invariant to the destination, i.e., c̃odv = c̃ov, and that
markups to foreign markets are unaffected.

We assume that products sold to the United States have the same cost structure as
those sold to the rest of the world and that markups to 3rd parties are also unchanged.
Essentially, the idea is that goods sold to Europe and America use the same mix of inputs.
We test this by examining unit prices of exports to third-party countries:

d log p̃o,−US,v

d log(1 + τo,US,v)
=

d log c̃o,US,v

d(1 + τo,US,v)
,

where we look at shipments from origin o to non-US destinations −US for variety v. As
we do not have transaction-level data, we leverage results from the prior section and
consider using aggregate shipment quantities to control for scale-effects.

Table 14 highlights the recovery of the pass-through of US tariffs on goods exported
via third party trade, controlling for the transaction-level aggregation in Section 6. We
consider data from 2017 (pre-tariff) and 2019 (post-tariff). Columns (1) and (2) conduct a
first difference regression with varying levels of fixed effects and controlling for aggregate
scale economies. We find that US tariffs did not change p̃ for third countries. Column (3)
conducts a two-stage regression, first netting out scale economies and then analyzing the
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Table 14: Decomposing US Tariff Pass-Through on Foreign Prices

(1) (2) (3)
∆ log p̃i,j ̸=US,v ∆ log p̃i,j ̸=US,v ∆ log p̃i,j ̸=US,v

∆ log(1 + τi,US,v) -0.0171 0.00758 -0.0193
(0.0200) (0.0108) (0.0227)

N 4,847,859 1,552,523 355,727
Fixed Effects
Destination-Variety ✓
Origin-Destination ✓
Sample All ∆τ ̸= 0 Chinese Origin

Notes: This table estimates the pass-through of US tariffs on scale-free prices to third-party countries. We
report first-difference OLS estimates with varying fixed effects and controls for scale economies. We per-
form a two-stage least squares estimates, first netting out scale economies and then regressing the residual
scale-free price on US tariffs. Column (1) includes destination-variety and origin-destination fixed effects.
Column (2) only considers products with changes in the US-origin Import tariff rate. Column (3) only
considers products originating in China. Standard errors are clustered at the product-origin level.

residual price p̃. We find no significant effect. This empirical result is extremely tight
around zero:

d log c̃o,US,v

d log(1 + τo,US,v)
≈ 0.

Markups To complete our incidence calculation, we require an estimate for the level of
markups, µ̃. We do this two ways. We first compute our own markup estimates using the
methodology of Feenstra (1994) as detailed in Appendix B.3. This approach assumes CES
demand and monopolistic competition to recover markups from trade data.31 Second,
as the CES may be inconsistent with our markups changes, we consider production-side
estimates, drawing from studies that use production data from China which find modal
markups around 1.3 for manufacturing exporters (Yue and Lin, 2023). As this produc-
tion function estimation models put little structure on demand, we consider it a good
complement to our own estimates, which rely on the Feenstra (1994) framework. Both
approaches yield similar markup estimates. We additionally show that our results are ro-
bust to a wide range of markup estimates, from 1.1 to 1.5, which encompasses the range

31There is a tension: the CES monopolistic competition model that underlies this method is globally
inconsistent with our main findings. Specifically, a standard CES model has constant markups. We employ
this method primarily because the Feenstra (1994) estimator identifies the supply and demand elasticity
from the variance-covariance structure of prices and quantities, and complements our IV approaches for
recovering the supply elasticity. We could extend this approach to include variable markups.
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Table 15: Transaction Scale Changes and Tariff Pass-Through

(1) (2) (3) (4)

2017-2019 Change Pricing Scale: ∆γOLS
o,d,v

∆(1+Tariff) -0.0264 -0.00581 0.181 0.0127
(0.0567) (0.0102) (0.123) (0.131)

Fixed Effects Country HTS6
Weighted Observations Quantile Regression Observations Observations

Notes: This table reports regressions of the change in the estimated quantity discount parameter (∆γ) be-
tween 2017 and 2019 on the change in tariffs over the same period. The dependent variable is the change
in the OLS-estimated scale parameter from Table 4 recovered at the level of origin-destination-variety-year.
Column (1) is a simple OLS regression weighted by the number of transactions. Column (2) reports a quan-
tile regression at the median. Columns (3) and (4) include country and HTS6 fixed effects, respectively.
Standard errors are in parentheses.

of estimates in the literature.

Scale Changes Implicit in our analysis, we have assumed that the scale elasticity γo,v is
constant across all products and origins and invariant to tariffs. We test this assumption
by estimating changes in γo,v,year directly from the data before and after the 2018 tariffs.
We retain the OLS framework from Table 4 and allow γ to vary by origin, variety, and
year.32 Table 15 shows that the changes in the scale elasticity is invariant to tariff changes
from 2017 to 2019. Column (1) is the baseline regression in first differences. Columns
(2-4) conduct robustness and controls for other factors such as country and HTS6 codes
or considering quantile regression.

Welfare Implications Table 16 presents a welfare decomposition of the US-China trade
war, under different assumptions. We combine observed changes in trade values and
quantities from 2018 to 2019, applied tariff rates, and estimated pass-through and scale
elasticities to compute the changes in buyer surplus, foreign producer surplus, and gov-
ernment revenue. Reported figures are then projected on a 2017 baseline and reported on
an annualized basis in 2017 dollars. Row 1 shows our baseline estimate: a $22.9 billion re-
duction in foreign producer surplus versus a $16.6 billion loss for domestic buyers. This
implies an incidence ratio (I) of 0.72, very different from non-scale adjusted estimates
where buyers bear all the burden.

This finding helps discern the underlying market structure. At the bottom of Table 16,

32Using the IV is problematic here, given concerns about first stage power.
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we report theoretical benchmarks derived from Section 2. Under a standard model like
Perfect Competition, incidence is dominated by domestic buyers (Incidence ratio of -∞
in our case because pass-through exceeds 100 percent). Our baseline result of I = 0.72
is incompatible with this standard framework. Instead, it lies closer to the ”One-Price
Monopoly” benchmark (I = 1.01), suggesting an important role for exporters to absorb
tariffs by reducing markups.

Comparing the ”Baseline” (Row 1) to ”Rest of World” (Row 3), we see the mechanism
in action. For non-China trade—where tariffs were lower and supply chains less dis-
rupted—the incidence ratio (0.85) is higher. In contrast, for US-China trade (Row 2) the
incidence ratio is lower at 0.71. This suggests that when faced with larger tariffs, Chinese
exporters reduced their markups more than their counterparts elsewhere.

In aggregate, the tariffs functioned as a tool of international redistribution, but with
significant efficiency costs. Our calculation in Row 1 suggests a net gain for the US (Buyer
Loss + Govt Revenue ≈ $13.4 billion gain). This result relies on our finding that the rele-
vant price for Buyer Surplus is the scale-free price p̃, not the observed unit value. While
observed unit values rose one-for-one with tariffs, a significant portion of this increase
was due to a mechanical slide up the cost curve as buyers reduced order sizes. By the
Envelope Theorem, the welfare loss from this quantity adjustment is second-order; the
primary distortion is the shift in the price schedule itself, which rose by only 60%.

However, this domestic gain came at the cost of a massive $22.9 billion profit shock
to foreign producers. This figure captures both the reduction in markups and the true
”efficiency loss” of the trade war—the real resources consumed by processing smaller,
more frequent batches. Because transaction-level costs rose as scale economies were lost,
foreign sellers faced a double squeeze: lower effective prices and higher per-unit costs,
consistent with the production declines documented in Chor and Li (2024).33 Overall,
world welfare declined by ≈ $9.5 billion. By exercising terms-of-trade power via tariffs,
the US successfully induced a squeeze on foreign profits, extracting rents as predicted
by relevant trade theory (Ossa, 2014; Bagwell and Staiger, 1999), albeit at a large cost
to aggregate efficiency. This analysis does not account for any foreign retaliation so we
cannot fully outline the full cost to both US and global welfare.

It is important to qualify that the Envelope Theorem provides a first-order approxi-
mation of welfare changes. While standard in the literature (Weyl and Fabinger, 2013;
Ganapati et al., 2020), our estimated quantity responses suggest that second-order effects
(”Harberger triangles”) could be non-negligible. Specifically, if the disutility of frequent
ordering rises non-linearly, the approximation might understate the administrative bur-

33A caveat is that we do not attribute profits of multinationals to ultimate owners.
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den on domestic buyers. However, even if we were to treat the loss of scale entirely as
a direct cost to buyers, the qualitative failure of the ”complete pass-through” result re-
mains, as the reduction in p̃ provides a substantial transfer.

Extensions and Robustness These tariff burden results are robust across a range of al-
ternative specifications. Rows 4-12 of Table 16 show that using different estimates for
scale economies yield broadly similar results, with the seller’s share of the burden remain-
ing substantial and incidence ratios between 0.6 and 0.85. Row 4 uses OLS-derived γv and
Row 5 uses the IV-derived common γ from Section 4. Row 6 uses the same mean µ = 1.3
across industries, Row 7 uses estimates of µ from Yue and Lin (2023)’s cost based ap-
proach from Chinese microdata, and Row 8 uses µ = 1.5. Row 9 considers the CES price
index, instead of the baseline quantity weighting. Row 10 uses the longer-run changes
from 2017-2019, instead of the baseline monthly variation (referring to Panel E in Table
12).

The main outlier is the ”Transaction-Level Pass-Through” estimate (Row 11), which
suggests buyers bore a larger burden (although still a finite incidence ratio!). This is be-
cause it is calculated using only intensive-margin adjustments within continuing relation-
ships, thereby missing the crucial effects of firm entry and exit and other compositional
shifts that are captured in our aggregate analysis.

One potential concern may be that we use γµ = 0. To test the quantitative significance
of this, we instead assume that scale economies are entirely driven by markups instead
(and thus γc = 0 instead). In Row 12, we re-calculate incidence under this assumption
and find that sellers would still bear a large share of the burden (Incidence = 0.54).

Our baseline welfare calculations primarily capture small changes. However, as shown
in Table 12, the data reveal a significant extensive margin response, with a large change
in transaction frequency. In Appendix A.4, we generalize our incidence framework to
explicitly account for these extensive margin effects. As of now, we are unable to directly
compare our local result to the general-equilibrium result in Fajgelbaum et al. (2020).

However, by locally approximating the surplus lost from exiting transactions in Row
13, we show that the total welfare impact is larger than the intensive-margin estimates
suggest and an order of magnitude larger than Fajgelbaum et al. (2020). While the qual-
itative distribution of the burden remains similar, there is now much larger aggregate
efficiency loss, as the extensive margin changes represent a true loss of mutually benefi-
cial trade relationships. In this case, domestic buyer welfare now declines by $30.3 billion,
outweighing government revenue. We leave a more precise comparison to Ganapati and
Hottman (2026), where we fully estimate a consistent demand system.
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Table 16: Welfare Effects of Tariffs

Change in Surplus Incidence Share of
(Billion 2017 USD) (Ratio) Surplus Change

Specification Seller Buyer Gov. Total Buyer Seller Domestic
/ Seller vs Buyer vs Foreign

1 Baseline -22.9 -16.6 30.0 -9.5 0.72 58% -141%
2 Baseline - China Only -20.9 -14.9 26.8 -9.0 0.71 58% -132%
3 Baseline - Rest of World -2.0 -1.7 3.2 -0.5 0.85 54% -300%
4 OLS Scale Discounts -26.9 -16.6 30.0 -13.5 0.62 62% -99%
5 Common Scale Discounts -27.0 -16.6 30.0 -13.6 0.61 62% -99%
6 Common Markups -19.7 -16.6 30.0 -6.3 0.84 54% -213%
7 Exogenous Markups -22.1 -16.6 30.0 -8.7 0.75 57% -154%
8 Common High Markups -24.7 -16.6 30.0 -11.3 0.67 60% -119%
9 CES Price Index -21.4 -18.2 30.1 -9.5 0.85 54% -125%

10 2017-2019 Only -22.1 -16.6 30.0 -8.7 0.75 57% -154%
11 Transaction Level Pass-Through -9.9 -23.7 30.6 -3.0 2.39 30% -228%
12 Markup Driven Scale -19.5 -16.6 30.0 -6.1 0.85 54% -221%
13 Extensive Margin -35.9 -30.3 30.0 -36.2 0.84 54% 1%

14 Perfect Competition −∞ -1% -
15 One-Price Monopoly 1.01 50% 1%
16 Perfectly Discriminatory Monopoly 0.00 100% -∞

Notes: This table presents the annualized welfare effects of the cumulative change in US tariffs in 2018 and
2019 under various specifications projected onto 2017 trade data. The first section (Rows 1-13) shows our
baseline and robustness checks, reporting changes in foreign seller surplus, domestic buyer surplus, gov-
ernment revenue, total welfare change, incidence ratios, and shares of surplus change. Total represents the
sum of Seller, Buyer, and Government revenue changes. The second section (Rows 14-17) provides theoret-
ical benchmarks for incidence under different market structures. See text for details on each specification.
Markup estimates are derived from either our own calculations using the Feenstra (1994) method, cost-
based estimates from Yue and Lin (2023), or assumed values. Scale discount estimates are derived from
either our OLS estimates or IV estimates from Section 4. The ”Extensive Margin” row (13) incorporates
first-order welfare effects from transaction entry and exit, as detailed in Appendix A.4.

7.3 Rationalizing the Pass-Through Mechanism

How do we reconcile our findings of incomplete base-price pass-through (ρ̃ ≈ 0.6) with
the existence of significant scale economies? In a standard competitive model with con-
stant markups, increasing returns to scale (a downward-sloping supply curve) implies
that tariff pass-through should exceed 100 percent. Intuitively, because tariffs reduce the
quantity demanded, and lower quantities drive up marginal costs (by moving firms up
the cost curve), the price increase should be amplified beyond the tariff itself.

To rationalize these findings, we interpret them through a structural framework that
accounts for simultaneous quantity discounts, imperfect competition, and variable markups.
We again adapt the sufficient statistic approach of Weyl and Fabinger (2013) to our setting
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with ad-valorem tariffs, following Adachi and Fabinger (2022).34 The unit-price pass-
through elasticity ρ is determined by the interaction of demand, scale, and conduct:

ρ ≡ d log P
d log(1 + τ)

=

 ϵD − θ

ϵD︸ ︷︷ ︸
Stabilizer


1 +

θ

ϵms︸︷︷︸
Curvature

+
θ

ϵθ︸︷︷︸
Conduct

+
ϵD − θ

ϵS︸ ︷︷ ︸
Scale Effect


−1

(23)

where ϵD is the price elasticity of demand, ϵS is the supply elasticity (the inverse of the
elasticity of marginal cost with respect to quantity), ϵms is the inverse elasticity of marginal
surplus (capturing demand curvature), and ϵθ is the inverse elasticity of the conduct pa-
rameter with respect to quantity. The conduct parameter θ ranges from 0 (perfect compe-
tition) to 1 (monopoly). See Appendix A.3 for the full derivation.

This decomposition illustrates that observed pass-through is the outcome of two op-
posing forces.

The Scale Effect vs. Markup Adjustment Counteracting the scale effect is the oppos-
ing force of Markup Adjustment (which is only possible when conduct is not perfectly
competitive so θ ̸= 0). First, consider the leading term ϵD−θ

ϵD
, which acts as a “stabi-

lizer”. As Delipalla and Keen (1992) show, ad-valorem tariffs act as automatic stabilizers
compared to specific taxes: because the tax payment scales with the price, firms face a
stronger disincentive to raise markups. This stabilizer effect persists even with non-linear
pricing. Second, the demand “curvature” and changing “conduct” terms in the denom-
inator capture additional mechanisms through which markup adjustment can dampen
pass-through (and these would be the only mechanisms in the case of specific taxes). The
conduct term reduces pass-through if εθ > 0, and thus higher tariffs make conduct less
competititve. Holding conduct fixed, the demand curvature term reduces pass-through
if 1

εms
> 0. This parameter 1/ϵms—the elasticity of marginal surplus—is analogous to the

“super-elasticity” of demand identified by Klenow and Willis (2016) and Kimball (1995)
as the source of real rigidities in macroeconomics. Note that 1

εms
= 1− ρMN where ρMN

is the demand curvature term in Mrázová and Neary (2017). For example, in the “Pollak
family” of preferences as formulated and estimated by Arkolakis, Costinot, Donaldson,
and Rodrı́guez-Clare (2019), ρMN = [(σ+1

σ )
(

qit
qit+α

)
]. They estimate α > 0, which is nec-

essary for 1
εms

> 0. Economically, 1
εms

> 0 satisfies “Marshall’s Second Law of Demand”:
as tariffs push prices up, the demand elasticity rises, forcing firms to compress markups
to defend market share.

34We assume that γ is invariant to tariffs, as shown in the empirical exercise. The appendix generalizes
results.
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In imperfectly competitive markets, firms typically compress markups in response to
taxes. The finding of complete pass-through (ρ ≈ 1) in recent trade war studies (Fajgel-
baum et al., 2020; Cavallo et al., 2021) presents a paradox, as it implies either perfect com-
petition or constant markups (CES monopolistic competition). Our estimate of scale-free
pass-through ρ̃ ≈ 0.6 resolves this paradox, confirming that when the mechanical effects
of quantity discounts are removed, the behavioral response of exporters aligns with the
theoretical prediction that ad-valorem taxes are under-shifted.

8 Conclusion

This paper shows the empirical relevance of quantity discounts at the transaction level
for US imports and their importance for aggregate outcomes. These discounts appear to
largely reflect scale economies on the supply-side and not market power. Furthermore,
accounting for quantity discounts changes our understanding of 2018–2019 tariff pass-
through and incidence. Ultimately, we show that the ‘pass-through puzzle’ is a problem
of composition: when trade collapses, efficiency is lost, and standard price indices and
pass-through estimates understate foreign incidence.

Our decomposition shows that foreign exporters are effectively fighting a two-front
war against tariffs. These two forces are jointly caused by the tariff-induced quantity de-
cline. On one side, the tariff reduces trade volumes, pushing them up their average cost
curves (the loss of scale economies). Our evidence suggests these costs are logistical—the
rising per-unit cost of shipping, handling, and processing smaller batches. This ”supply
chain waste” represents a real efficiency loss, consuming resources that could have oth-
erwise been deployed elsewhere. On the other side, to maintain market share, exporters
compress their markups. Consequently, the incidence falls much more heavily on foreign
producers than previously recognized. This finding challenges the view that US tariffs
were largely paid by domestic consumers. And while the more recent 2025 tariffs are
more broad-based than those considered in this paper, recent estimates (e.g., Gopinath
and Neiman (2026)) continue to suggest 100 percent pass-through of these more recent
tariffs to U.S. import prices. Our results show that this result is not sufficient to infer
incidence, and indeed if the same mechanisms remain at work, then foreigners could be
bearing a significant share of these new tariffs despite the pass-through result.

Our analysis focuses on the direct, partial equilibrium effects of tariffs within affected
bilateral relationships. A natural question is whether these scale economies were simply
transferred to other countries via trade diversion (e.g., Vietnam or Mexico). We leave
general equilibrium frameworks (e.g., Fajgelbaum et al. (2020)) for future work.
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Beyond this paper, the appropriate consideration of quantity discounts is important in
several other contexts. For example, methodologies that rely on material usage as a proxy
for undistorted flexible inputs, commonly used to measure distortions in output and labor
markets (Yeh, Macaluso, and Hershbein, 2022), may be biased if quantity discounts are
ignored. Similarly, in industrial organization, the link between transaction scale and firm
scale (Ganapati, 2025) suggests that studies of sectoral welfare must account for this het-
erogeneity. Finally, in a macroeconomic context, such quantity discounts affect analyses
that rely on aggregate input-output tables or assume market structures where upstream
prices are exogenous or linear (Baqaee and Farhi, 2020).
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A Theoretical Derivations and Microfoundations

A.1 Derivation of Buyer Surplus Change

Buyer surplus is defined as the utility U(q) derived from consuming quantity q minus
the total expenditure. Given the non-linear unit price schedule P(q) = p̃p(q), where
p̃ is the tariff-inclusive base price level and p(q) is the scale factor (reflecting quantity
discounts), the buyer’s total expenditure is E(q) = q · p̃p(q). The buyer chooses q to
maximize surplus:

DS( p̃) = max
q
{U(q)− p̃p(q)q} (24)

To determine the incidence of a tariff change, we first consider the effect of a change in the
base price p̃. By the Envelope Theorem, the change in maximized surplus with respect to
the parameter p̃ is equal to the partial derivative of the objective function, evaluating q at
the optimal choice:

dDS
dp̃

= −∂E
∂ p̃

= −p(q)q (25)

This result mirrors Shephard’s Lemma but is modified by the scale factor p(q). It implies
that the effective welfare loss from a base price increase is proportional to the *discounted*
price paid, not the base price. Differentiating with respect to the tariff term (1 + τ) and
applying the chain rule yields:

dDS
d(1 + τ)

=
∫

t

dDSt

dp̃t

dp̃t

d(1 + τ)
dt = −

∫
t
qt p(qt)

dp̃t

d(1 + τ)
dt (26)

This corresponds to Equation ((2)) in the main text (which reports the magnitude of the
incidence). If p(q) = 1 (uniform pricing), this collapses to the standard result where
welfare loss is simply quantity times the change in price.

Simplification with Iso-elastic Pricing If we assume the scale factor takes the iso-elastic
form p(q) = qγ, then the term p(q)q simplifies to qγ · q = q1+γ. The buyer surplus
derivative becomes:

dDS
d(1 + τ)

= −
∫

t
q1+γ

t
dp̃t

d(1 + τ)
dt (27)

This can be re-written in terms of observed transaction value. Let Vt = P(qt)qt = p̃tq
1+γ
t

be the total value of transaction t. We can rewrite the derivative of the level term as
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dp̃t
d(1+τ)

= p̃t
d ln p̃t

d(1+τ)
. Substituting these in yields:

dDS
d(1 + τ)

= −
∫

t
Vt

d ln p̃t

d(1 + τ)
dt (28)

This result implies that if we define pass-through as the percentage change in the scale-
free price ( d ln p̃t

d ln(1+τ)
), aggregate incidence is simply the pass-through multiplied by total

transaction value. This is the expression used in the main text.

Caveat on Large Adjustments It is important to qualify that the Envelope Theorem re-
sult relies on the assumption of marginal adjustments. If the inventory or administrative
cost function C(q) is convex (e.g., rising sharply as order size approaches zero due to
fixed logistical overhead), the linearization implied by the Envelope theorem will under-
state the welfare loss. The lost surplus from the ’intramarginal’ units that are no longer
purchased—and the lost efficiency from the units now purchased at inefficiently small
scales—represents a second-order deadweight loss (analogous to a Harberger triangle,
but potentially larger).

A.1.1 Impact on Incidence: γ is Endogenous

When the shape parameter γ is endogenous, the incidence of the tax becomes heteroge-
neous across consumers of different sizes. Applying the Envelope Theorem to the con-
sumer’s problem, the change in consumer surplus is driven by the direct shift in the price
schedule at the chosen quantity q:

dCS(q)
d log T

= −Expenditure(q)× (ρ̃ + ργ log q) (29)

This reveals that the ”effective” pass-through for welfare analysis is not a single number
but a function of quantity: ρ̃eff(q) = ρ̃ + ργ log q. Consequently, relying on the aggregate
average ρ̃ may mask distributional effects where the tax burden is shifted disproportion-
ately onto large or small buyers depending on the sign of ργ.

A.2 Derivation of Producer Surplus Change

In this section, we derive the change in producer surplus with respect to tariffs as pre-
sented in Equation (3).

57



Producer surplus is defined as the integral of profits over all transactions:

PS =
∫

t∈T
π(t) dt (30)

=
∫

t∈T
[R(t)− C(t)] dt (31)

where R(t) denotes revenue and C(t) denotes total variable costs for transaction t. Note
that revenue is a function of the tariff-inclusive price faced by the buyer, stripped of the
tariff wedge. Let τ be the ad-valorem tariff rate.

The revenue for a single transaction is:

R(t) =
P(qt)

1 + τ
· qt =

p̃ · p(qt)

1 + τ
· qt (32)

The total cost for a single transaction is:

C(t) = Unit Cost(qt) · qt = [c̃ · c(qt)] · qt (33)

We are interested in the derivative of aggregate producer surplus with respect to the
tariff factor (1 + τ). By linearity of the integral, we can differentiate term by term:

dPS
d(1 + τ)

=
∫

t

[
dR(t)

d(1 + τ)
− dC(t)

d(1 + τ)

]
dt (34)

A.2.1 Revenue Decomposition

Differentiating the logarithm of revenue R(t) with respect to log(1 + τ):

log R = log p̃ + log p(q) + log q− log(1 + τ) (35)

d log R
d log(1 + τ)

=
d log p̃

d log(1 + τ)
+

d log p(q)
d log q

d log q
d log(1 + τ)

+
d log q

d log(1 + τ)
− 1 (36)

Grouping terms involving q:

d log R
d log(1 + τ)

=
d log p̃

d log(1 + τ)
+

(
1 +

d log p(q)
d log q

)
d log q

d log(1 + τ)
− 1 (37)

Converting from elasticities back to levels using dX/X = d log X:

dR
d(1 + τ)

=

[
d log p̃

d log(1 + τ)
+ (1 + γ)

d log q
d log(1 + τ)

− 1
]

R
1 + τ

(38)
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where γ =
d log p(q)

d log q is the elasticity of the price schedule (quantity discount).

A.2.2 Cost Decomposition

Similarly, for costs C(t):

log C = log c̃ + log c(q) + log q (39)

d log C
d log(1 + τ)

=
d log c̃

d log(1 + τ)
+

(
1 +

d log c(q)
d log q

)
d log q

d log(1 + τ)
(40)

Assuming base costs c̃ are constant with respect to tariffs (no input linkages): d log c̃
d log(1+τ)

=

0. However, retaining the general form:

dC
d(1 + τ)

=

[
d log c̃

d log(1 + τ)
+ (1 + γc)

d log q
d log(1 + τ)

]
C

1 + τ
(41)

Substituting these components back into the integral yields the result in the main text.

A.3 Recovering Pass-Through

We follow Weyl and Fabinger (2013), but with both ad-valorem taxes and endogenous
pricing (subject to caveats).

A.3.1 Demand and Pricing

Consumers face a non-linear price schedule set by the firm. The unit price p depends on
quantity q according to the schedule:

p(q) = p̃ · qγ (42)

where γ is a fixed parameter capturing the non-linearity (e.g., bulk discounts if γ < 0,
surcharges if γ > 0).

Assumption (Consumer Internalization): The consumer fully observes and internal-
izes the shape of this schedule (the quantity discount or surcharge determined by γ), but
takes the base price parameter p̃ as given. They maximize utility U(q)− p(q)q. The First
Order Condition (U′(q) = p(q) + p′(q)q) yields the inverse demand curve effectively
faced by the firm:

p(q) =
U′(q)
1 + γ

(43)
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A.3.2 Firm Behavior

The firm chooses the base price p̃ to maximize profit, given the schedule shape γ and
a conduct parameter θ (where θ = 0 implies perfect competition and θ = 1 implies
monopoly). The firm faces an ad-valorem tax (or tariff) T = 1 + τ. The equilibrium
condition is:

MR(q) = MC(q) · T (44)

Marginal Revenue is defined structurally by conduct θ:

MR(q) = p
(

1− θ

ϵD

)
(45)

A.3.3 Elasticity Definitions

To derive pass-through, we define the following structural elasticities:

• Demand Elasticity (ϵD): Defined on the inverse demand curve p(q) faced by the
firm:

1
ϵD
≡ −dp

dq
q
p

• Marginal Surplus (ms): Defined as the absolute gap between price and marginal
revenue for a monopolist (or the slope of the inverse demand times quantity). It
represents the consumer’s inframarginal surplus on the last unit:

ms(q) ≡ −p′(q)q =
p(q)
ϵD

Note that we can rewrite Marginal Revenue as MR(q) = p(q)− θms(q).

• Curvature of Marginal Surplus (ϵms): The inverse elasticity of the marginal surplus
function, which captures the curvature of demand (often related to the convexity of
the demand curve), consistent with Weyl and Fabinger (2013):

ϵms ≡ ms/(
dms
dq

q)

• Conduct Elasticity (ϵθ): While θ is often treated as a parameter, it may vary with
quantity (e.g., if collusion stability depends on volume). We define its inverse elas-
ticity as:

ϵθ ≡ θ/(
dθ

dq
q)
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A.3.4 Derivation of Unit Price Pass-Through (ρ)

We seek the pass-through rate of the tax to the observable unit price, defined as ρ ≡ d log p
d log T .

A.3.5 Log-Linearization

Taking logs of the equilibrium condition MR = MC · T:

log MR(q) = log MC(q) + log T (46)

Differentiating with respect to log q and multiplying by the response of quantity to tax
d log q
d log T :

d log MR
d log q

d log q
d log T

=
d log MC

d log q
d log q
d log T

+ 1 (47)

Rearranging to solve for the quantity response:

d log q
d log T

=
1

d log MR
d log q −

d log MC
d log q

(48)

By definition of demand elasticity, the price change is linked to quantity by d log p
d log q = − 1

ϵD
.

Thus ρ = − 1
ϵD

d log q
d log T . Substituting this in:

ρ =
−1/ϵD

d log MR
d log q −

1
ϵS

=
1

−ϵD
d log MR

d log q + ϵD
ϵS

(49)

A.3.6 Expansion of Marginal Revenue

We expand the term d log MR
d log q . Using MR = p− θms and differentiating with respect to q:

dMR
dq

= p′ − (θ′ms + θms′)

= p′ − θms
(

θ′

θ
+

ms′

ms

)
Converting to elasticities. Recall p′ = −p/(qϵD) and ms = p/ϵD:

dMR
dq

=
dp
dq

[
1 + θ

ms
−p′

(
ϵθ

q
+

ϵms

q

)]
(50)
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Note that ms
−p′ =

−p′q
−p′ = q. Thus:

dMR
dq

=
dp
dq

[
1 + θ(ϵ−1

θ + ϵ−1
ms )
]

(51)

Finally, converting to the logarithmic derivative d log MR
d log q = dMR

dq
q

MR :

d log MR
d log q

=

(
dp
dq

q
p

)
︸ ︷︷ ︸
− 1

ϵD

p
MR

[1 + θϵ−1
ms + θϵ−1

θ ] (52)

A.3.7 Pass-Through

Substituting this back into Eq ((49)), and using the identity p/MR = ϵD/(ϵD − θ), we
substitute p

MR and factor it out to obtain the structural pass-through formula:

ρ =
1

ϵD
ϵD−θ

[
1 + θ/ϵms + θ/ϵθ +

ϵD−θ
ϵS

] (53)

Note: This factorization highlights that pass-through is scaled by the inverse markup.
The formula depends on γ only implicitly (as γ affects the equilibrium values of ϵD and
ϵS), but the structural form is identical to the standard case.

Comparison to the Specific-Tax Formulation This is a scaled version of the specific tax
formulation in Weyl and Fabinger (2013). In particular:

ρ = ρST ·
mr
p

= ρST ·
ϵD − θ

ϵD
.

Where the ad-valorem pass-through ρ =
d log p
d log T is linked to the specific tax pass-through

ρST = dp
dt via an ”equivalent” specific tax shock.

There are a few differences. The elasticity formulation means we do not use the Lerner
markup rule, but rather just the internalized marginal revenue term and do not worry
about the specific tax starting at t = 0. The relationship between specific tax t and ad-
valorem tax 1 + τ is exactly inverse of the markup.

Let t(T) be a specific tax that yields the same equilibrium marginal cost shift as the
ad-valorem tax T at the current optimum:

t(T) = (T − 1)MC
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Differentiating this effective burden with respect to T gives the intensity of the cost shock:

dt
dT

= MC

Using the chain rule, the price response to the ad-valorem tax is the specific pass-
through rate times this cost shock intensity:

dp
dT

=
dp
dt

dt
dT

= ρST ·MC

To convert this to an elasticity, we multiply by T
p :

ρ =
T
p

dp
dT

=
T
p
(ρST ·MC) = ρST

MC · T
p

Using the equilibrium condition MR = MC · T, we substitute the numerator:

ρ = ρST
MR

p

A.3.8 Base Price Pass-Through (ρ̃)

While ρ measures the change in the realized unit price, welfare analysis requires tracking
the shift in the pricing schedule. We define the base price pass-through as:

ρ̃ ≡ d log p̃
d log T

(54)

Relationship between ρ and ρ̃ From the pricing schedule p = p̃qγ, we differentiate with
respect to log T:

ρ = ρ̃ + γ
d log q
d log T

= ρ̃ + γ(−ϵDρ) (55)

Solving for ρ̃:
ρ̃ = ρ(1 + γϵD) (56)

This geometric link holds regardless of market structure or conduct. It relates the move-
ment along the schedule (determined by ρ) to the shift of the schedule (ρ̃).

63



A.4 Generalizing the Framework: The Extensive Margin

Our local incidence analysis in Section 2.2 captures the intensive margin (changes in trans-
action size) but omits the extensive margin (changes in transaction frequency). We now
extend the framework to incorporate this margin and provide a complete welfare calcu-
lation.

The change in producer surplus, dPS = dR − dC, can be calculated using our em-
pirical findings. Since quantity discounts are cost-driven (γ = γc) and scale-free costs
are unaffected by tariffs (d ln c̃/d ln(1 + τ) = 0), we can relate costs to revenues via the
markup: C = R/µ̃. The change in producer surplus is then:

dPS
d(1 + τ)

=
R

1 + τ

[
d ln R

d ln(1 + τ)

(
1− 1

µ̃

)
+

1
µ̃

d ln µ̃

d ln(1 + τ)

]
. (57)

All terms on the right-hand side are either directly estimated from our tariff regressions
or taken from the literature, allowing us to compute the incidence on producers without
direct cost data.

The downstream buyer surplus calculation in Equation (2) is incomplete, as it only
captures the welfare change for continuing transactions (the intensive margin). Our re-
sults show a strong extensive margin response, with a significant drop in the number of
transactions. A more complete expression for the change in downstream buyer surplus
is:

dDS
d(1 + τ)

=
∫

t∈Tcont

dp̃t

d(1 + τ)
qtdt−

∫
t∈Texit

DStdt, (58)

where Tcont is the set of continuing transactions, Texit is the set of exiting transactions, and
DSt is the surplus from a transaction prior to its exit. While precisely calculating the lost
surplus from exiting transactions (DSt) is difficult without a full demand model.

A simple approximation is to assume that the average surplus lost per exiting transac-
tion is proportional to the average surplus lost per continuing transaction. If we further
assume that the pre-tariff quantity of exiting transactions is similar to that of continuing
ones, we can approximate the total lost surplus from the extensive margin by scaling the
intensive margin loss by the relative number of exiting to continuing transactions. This
leads to the following approximation for the total change in downstream buyer surplus:

dDS
d(1 + τ)

=
d(T · DS)
d(1 + τ)

=
dT

d(1 + τ)
DS + T

dDS
d(1 + τ)

, (59)

where T is the number of transactions and DS is the average downstream buyer surplus
per transaction. The first term captures the extensive margin (change in the number of
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transactions), while the second term captures the intensive margin (change in surplus
per transaction). We can approximate the change in average surplus using our intensive
margin estimate for continuing transactions: T dDS

d(1+τ)
≈
∫

t∈Tcont

dp̃t
d(1+τ)

qtdt.

A.5 Microfoundation for IV Strategy

Our IV strategy exploits two procurement structures. Buyers make monthly inventory
decisions that allocate total demand across suppliers. Buyers also then split each sup-
plier’s monthly quantity across multiple transactions for logistical reasons. These levels
generate different correlation patterns and correspond to our two IV specifications.

A.5.1 Inventory and Supplier Allocation

Buyer j faces monthly demand Dj,t = D̄j · exp(ε j,t) where ε j,t is a monthly shock. Follow-
ing inventory models (Arrow et al., 1951), the buyer orders to maintain target stock:

Qj,v,t = κ · Dj,t − Ij,t−1 ≈ κD̄j · ε j,t (60)

This total is allocated across suppliers i ∈ Ij to minimize cost. With quantity discounts
pi(Q) = p̃iQγ and fixed transaction costs Ai, the optimal allocation is:

Qi→j,v,t = sharei ·Qj,v,t where sharei =
p̃−1/γ

i

∑k p̃−1/γ
k

(61)

Purchases from different suppliers move together in a positive correlation:

log Qi→j,v,t = log(shareiκD̄j) + ε j,t (62)

A.5.2 Transaction Allocation Within Supplier-Month

Each supplier’s monthly total Qi→j,v,t is split across transactions {qi→j,τ,v}τ∈t based on
logistics (shipping schedules, inventory cycles, payment terms). These factors are orthog-
onal to transaction-specific pricing shocks ξτ (quality issues, rush delivery, spot pricing).

The budget constraint is:

∑
τ∈t

qi→j,τ,v ≈ Qi→j,v,t (63)
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Transactions within the same month are mechanically related in a negative correlation:

qi→j,τ,v ≈ Qi→j,v,t − ∑
τ′ ̸=τ

qi→j,τ′,v (64)

A.5.3 Two IV Strategies

Within-Month Allocation (Column 3 - Baseline).

IV(2)
i→j,τ,v = log ∑

τ′ ̸=τ,τ′∈t
qi→j,τ′,v (65)

Relevance: From (63), IV(2) ≈ Qi→j,v,t − qτ → negative correlation
Exclusion: E[ξi,τ|IV(2)] = 0 if transaction shocks don’t affect:

(i) Monthly procurement plan Qi→j,v,t (predetermined by Level 1)

(ii) Allocation timing of other transactions (determined by logistics)

Cross-Supplier (Column 6).

IV(1)
i→j,v,t = log ∑

k ̸=i
Qk→j,v,t (66)

Relevance: Both Qi and IV(1) depend on ε j,t → positive correlation
Exclusion: E[ξi,τ|IV(1)] = 0 if transaction shocks to supplier i don’t affect:

(i) Total monthly demand Qj,v,t (predetermined by downstream production)

(ii) Allocation to other suppliers (determined by base prices { p̃k})

A.5.4 Role of Fixed Effects

Seller-month-variety FE (γi,v,t) control for supplier i’s total activity in month t, absorbing
common demand shocks across buyers. This leaves identification from within-month
allocation, explaining the negative first-stage coefficient in our baseline specification.

Buyer-seller-variety FE (µi→j,v) control for time-invariant relationship characteristics
(base prices p̃i, allocation shares).
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A.5.5 Reconciling the Estimates

The two IVs yield different estimates (γ = −0.284 vs −0.200).
Sample selection: Column 3 requires multiple transactions per month; Column 6 re-

quires multiple suppliers. Different selections may capture different LATEs if γ is hetero-
geneous.

Weak IV bias: Column 6’s weaker first stage (F = 115) may induce finite-sample bias
toward OLS (−0.268), making the estimate smaller in magnitude.

Exclusion violations: If either exclusion restriction is violated, estimates diverge. The
similarity suggests both are approximately valid.

We report Column 6 (γ = −0.200) as the conservative estimate for robustness checks.

A.5.6 Relation to Existing Literature

This framework combines inventory models (Arrow et al., 1951; Alessandria et al., 2010)
with ”leave-one-out” IV strategies (Angrist, 2014). The negative first-stage coefficient
does not invalidate the IV—mechanical negative correlation from budget constraints is
standard in peer effects and network literatures when group totals are fixed.

B Additional Empirical Results and Robustness Checks

B.1 Comparison of Scale Across Methods

Table A.1 compares the variety-level scale elasticity estimates (γ) from Section 4.2. Each
observation is an HTS 6-digit variety. The table reports regressions of the IV estimates
(γIV), structural estimates (γStructural), and shipping cost-based estimates (γShipping) on
the baseline OLS estimates (γOLS). The structural estimates are computed using a method
similar to Feenstra (1994), which assumes locally iso-elastic demand. Columns (1)-(4)
report unweighted regressions, while columns (5)-(8) report regressions weighted by the
number of observations in each variety. The results show a strong positive correlation
between the different estimation methods, particularly between the OLS and IV estimates.

We take these results as evidence that the scale elasticity estimates are robust across
different methods and that the OLS and IV estimates are reliable indicators of the true
scale elasticity. The strong correlation between these estimates suggests that the differ-
ences in the methods used to estimate γ do not significantly alter the overall findings.

In particular, the cost-based estimates are particularly interesting as they provide a dif-
ferent perspective on the scale elasticity, which is not directly influenced by the demand
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structure or the availability of data on downstream buyer behavior. The strong correla-
tion between the shipping cost-based estimates and the other methods further supports
the robustness of the scale elasticity estimates.

Table A.1: Comparison of Scale Elasticity Estimates (γ) Across Varieties

(1) (2) (3) (4) (5) (6) (7) (8)
γIV γStructural γStructural γShipping γIV γStructural γStructural γShipping

γOLS 0.834 0.782 0.652 0.906 1.167 1.157
(0.00974) (0.0251) (0.0214) (0.00764) (0.0249) (0.0141)

γIV 0.683 0.975
(0.0244) (0.0256)

R2 0.631 0.155 0.185 0.173 0.766 0.254 0.339 0.602
Weighting Unweighted Weighted - Observations

Notes: This table compares the variety-level scale elasticity estimates (γ) from Section 4.2. Each observa-
tion is an HTS 6-digit variety. The table reports regressions of the IV estimates (γIV), structural estimates
(γStructural), and shipping cost-based estimates (γShipping) on the baseline OLS estimates (γOLS). The struc-
tural estimates are computed using a method similar to Feenstra (1994), which assumes locally iso-elastic
demand. Columns (1)-(4) report unweighted regressions, while columns (5)-(8) report regressions weighted
by the number of observations in each variety.

B.2 Recovered Scale Elasticity Correlates

In Table A.2, we perform a falsification test of the price discrimination hypothesis. We
relax the assumption of a common scale elasticity and instead recover a unique scale
elasticity γi,j,v for every buyer-seller pair using the strategy from Section 4.2. If quan-
tity discounts were driven by second-degree price discrimination, we would expect the
steepness of the discount schedule to vary with the relative market power of the trading
partners.

We regress these relationship-specific elasticities on proxies for market power, includ-
ing related party status, bilateral volume, and market shares. Standard errors are clus-
tered at the variety level. As shown in Table A.2, we find precise null results: none of
the market power proxies are statistically significant predictors of γi,j,v. This lack of cor-
relation is strong evidence against the price discrimination mechanism. It supports our
main interpretation that γ reflects a technological parameter (e.g., logistical cost structure)
that is common across transactions, rather than a strategic variable adjusted for specific
relationships.

In A.3, we explore the correlates of year-on-year changes in variety scale elasticities
from 2016 to 2017. Each observation is a variety scale elasticity. We regress the change in
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Table A.2: Correlates of Buyer-Seller Scale Elasticities

(1) (2) (3) (4) (5) (6)
γi,j,v γi,j,v γi,j,v γi,j,v γi,j,v γi,j,v

Related Party -0.756
(0.717)

Bilateral Quantity: log(qij) 0.00856
(0.0964)

Output Share -0.159
(0.773)

Input Share 0.0905
(0.505)

Quantity Sold: log(qi) -0.00435
(0.0144)

Quantity Bought: log(qj) 0.00993
(0.00852)

R2 0.25 0.25 0.25 0.25 0.0187 0.0187
Within R2 0.0000101 8.45E-09 5.09E-08 3.34E-08 2.77E-08 0.00000018
Fixed Effects Buyer-Variety, Seller-Variety Variety

Notes: This table uses the OLS strategy from Section 4.2 to recover a scale-elasticity for every buyer-seller
pair in the data. Each observation is a buyer-seller-variety scale elasticity. Standard errors are clustered at
the variety level.

scale elasticities on changes in various factors such as changes in HHI for both buyers and
sellers, changes in the number of buyers, sellers, pairs, transactions, and value. Standard
errors are clustered at the variety level. We do not find that the changes in scale elasticity
are significantly correlated with any of these factors.

B.3 Structural Estimation of Supply and Demand Elasticities

One downside of this reduced form approach is that it doesn’t account for the shape of
demand (such as the elasticity of substitution), but rather instruments for variation in de-
mand while simultaneously controlling for supply shocks. An alternative approach is to
structurally estimate supply and demand within a relationship over time. Following the
trade literature, we can estimate both the within-relationship (inverse) supply elasticity
alongside the demand elasticity using panel data, which we collect at the monthly level
for relationships. This is a simplification from our purely transaction-level approach, but
as the estimation require a continuous panel, we compromise at this level of aggregation.
Similarly, we also run our analysis at the 6-digit HS code level.

As an alternative, we can put structure on demand (say CES), and we can jointly es-
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Table A.3: Correlates of Changes in Buyer-Seller Scale Elasticities

(1) (2) (3) (4) (5) (6) (7)
∆γOLS ∆γOLS ∆γOLS ∆γOLS ∆γOLS ∆γOLS ∆γOLS

∆ HHI Seller 0.639
(0.520)

∆ HHI Buyer 0.359
(0.203)

∆ log(Buyers) 0.31
(0.275)

∆ log(Sellers) 0.162
(0.194)

∆ log(Pairs) 0.149
(0.149)

∆ log(Transactions) 0.00444
(0.0316)

∆ log(Value) -0.00412
(0.0101)

R2 0.003 0.001 0.003 0.001 0.001 0.000

Notes: This table explores the correlates of year-on-year changes in buyer-seller scale elasticities (γ) from
2016 to 2017. Each observation is a buyer-seller-variety scale elasticity. We regress the change in scale
elasticities on changes in various factors. Standard errors are clustered at the variety level.
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timate supply and demand, following Feenstra (1994), and in an application similar to
Hottman, Redding, and Weinstein (2016). There is one downside to this, all demand and
supply functions must have fully defined functional forms. We will assume constant elas-
ticity of demand (CES) and a constant elasticity of supply (globally as opposed to locally).

As for identification, fundamentally, there is a timing assumption, shocks in demand
between time periods and between trading pairs are orthogonal to shocks on the supply
side. This assumption does need a parametrization of both supply and demand to recover
residuals.

Traditionally, this analysis is run at the origin-country, destination-country, and prod-
uct category level (extensions include Broda and Weinstein (2010) and Soderbery (2015)).

Formally, assume the transaction-level demand is CES. Taking logs, taking the time
difference and differencing relative to another buyer-seller pair r in the same sector s
gives

∆r,t ln(qvt) = (−σs)∆r,t ln(pvt) + νvt, (67)

where ∆r,t refers to the double difference.
Next, we assume the following transaction-level pricing equation holds in double-

differences form:
∆r,t ln pvt = ωs∆r,t ln(qvt) + κvt, (68)

We assume that the following orthogonality condition holds for each buyer-seller pair:

G(βs) = ET [νvtκvt(βs)] = 0 (69)

where ET is the time series expectation and βs =

(
σs

ωs

)
.

Re-writing this orthogonality assumption gives:

ET

[
(∆r,t ln pvt)

2
]
= ET

[
(

ωs

σs )(∆
r,t ln qvt)

2 + (
ωsσs − 1

σs )∆r,t ln qvt∆r,t ln pvt +
1
σs νvtκvt

]
,

(70)
which simplifies to:

ET

[
(∆r,t ln pvt)

2
]
= (

ωs

σs )ET

[
(∆r,t ln qvt)

2
]
+ (

ωsσs − 1
σs )ET

[
∆r,t ln qvt∆r,t ln pvt

]
. (71)

Implementation Implementation of the simultaneous identification of supply and de-
mand is relatively demanding. It requires a continuous time series for multiple buy-
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ers and sellers over time.35 Furthermore, the identification of such demand and supply
curves are not directly applicable to the idiosyncratic transaction level data. To adapt the
data, we make two adaptations. First, instead of considering products at the root 10-digit
level, we aggregate to the 4-digit level. Second, instead of using the raw transactions at
the daily level, we aggregate to the monthly level. Overall, we are left with a time series
of buyers and sellers from 2008 to 2016, where the relationship is active for 12 continuous
time periods (months in this application). We winsorize price, sales, and quantity changes
at the 1% and 99% levels.

There are also a few choices that need to be made for GMM estimation. First is the
initial search space. We search over values σ and ω in the space starting by -2 to 2 for ω

and 1 to 12 for σ. Second is in the weighting of observations. We largely follow Broda
and Weinstein (2006) and weight observations by a function of the count of observations
within a trading relationship.

Results Operationally, this technique is more demanding than that in Section 4.2, fur-
thermore it requires a grid search to account for multiple solutions. Following the litera-
ture, we do primarily restrict the solution to those with downward sloping demand; but
are flexible in terms of supply.

As noted in the literature, there are multiple possible solutions, due to the fact that the
solution lies at the intersection of two hyperbolas. We find this to be common. Typically
we find there are two solutions, often one of the solutions is small and with ω near zero
and the other solution is broadly falls in the line of our estimates, where ω ≈ γv ≈ −0.3.

Table A.4: Combined Supply and Demand Estimation

Supply Elasticity (ω) Demand Elasticity (σ) Correlation

Spec Median Mean Variance 1
mean(σ−1)

emean(ln σ) (ω,σ−1)

1 -0.233 -0.365 0.205 3.425 7.794 0.587
2 -0.618 -0.496 0.183 6.494 11.510 0.465
3 -0.222 -0.357 0.208 3.497 9.976 0.532

Notes: See text for details.

Table A.4 shows our results. Fundamentally, ω is similar to the γ estimated, but with
a different strategy. We consider this below.

35This technique is infeasible with the domestic data, as data are collected only in a single time period for
any origin.
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We first choose the solution with σ > 0 and with the smallest inverse supply elasticity.
In this main specification (Specification 1), we find a median supply elasticity of -0.233
and a mean elasticity of -0.365, with a variance of 0.205 across HTS codes. These estimates
are broadly in line with our standard identification strategy and illustrates the robustness
of both the instrumentation strategy and well as the consistent identification of demand.

In terms of the demand side, there is a wide right tail in σ, with some point esti-
mates trailing off towards infinity. Some researcher use ad-hoc trimming of the under-
lying data to get that under control. Instead we report the inverse of the mean of the
inverse. This transformation (and the related logarithmic and exponential) transforma-
tion, finds a mean demand elasticity of approximately of σ = 3.4, which is broadly in line
with the literature.

Overall, this is broadly consistent with the supply elasticities estimated in the more
reduced-form exercise Section 4.2, as well as firm-demand estimates of σ from Hottman
et al. (2016).36

B.4 Alternative Time Periods

In table A.5, we replicate Table 11 for the year 2019. We use the same specifications as
in Table 11, but we only include transactions from 2019. The results show that the pass-
through of tariffs to observed prices is still significant, but the magnitude of the effect is
lower compared to the 2017-2018 period. However the gap between the effect for raw
unit values (column 1) and the effect for quantity-adjusted values (columns 2 and 3) is
similar compared to the 2018 tariffs.

Table A.6 reports the results of estimating the aggregate pass-through of tariffs to ob-
served unit values, quantity-adjusted unit values, and other relevant variables for the
period 2017-2018. We drop the 2019 tariffs, which did not have long to be in before
the COVID-19 shock. The table includes fixed effects at the product-origin-month level
and clusters standard errors at the product-origin level. The coefficients in column (1)
represent the reduced-form pass-through of tariffs to observed unit values, while col-
umn (2) reports pass-through to quantity-adjusted unit values, constructed by netting
out transaction-level scale effects using the estimated γ from Section 4.2. Column (3) de-
composes the scale-adjusted price into the composite of markups and marginal costs µc̃,
isolating the change in seller pricing behavior net of the mechanical tariff effect. Column
(4) reports the residual quantity composition effect q̃. Column (5) shows the effect on to-

36It also lines up broadly with Broda and Weinstein (2006) and others at the level of substitution between
countries.
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Table A.5: Transaction-level Tariff Pass-Through: Within Relationships: 2019 Only

(1) (2) (3) (4) (5) (6)
log(p) log( p̃OLS) log( p̃IV) log(pq) log(q) log(p)

log(1 + Tariffs Applied) 0.865 0.667 0.648 -0.0563 -0.921
(0.0284) (0.0212) (0.0366) (0.0324) (0.0432)

log(1+ Tariffs Statutory) 0.975
(0.340)

R2 0.953 0.956 0.991 0.715 0.897 0.954
Within R2 0.00104 0.00105 0.000522 0.00000271 0.00049 0.00000124

Fixed Effects Buyer-Seller-Variety, Variety-Year-Month

Notes: This table reports transaction-level tariff pass-through estimates for continuing buyer-seller-variety
relationships in 2019. All specifications include buyer-seller-variety and variety-year-month fixed effects.
Standard errors are clustered at the relationship level. Column (1) shows the pass-through of applied tariffs
(duty paid) to observed transaction prices. Columns (2) and (3) report pass-through to quantity-adjusted
prices (p̃), constructed using the OLS and IV estimates of the scale elasticity γ from Section 4.2, respectively.
These columns isolate the change in the price schedule from compositional effects. Column (4) reports the
effect on transaction value, while Column (5) shows the response of transaction quantity. Column (6) shows
the pass-through of statutory tariffs.

tal transaction values pq, column (6) reports the quantity response, column (7) shows the
change in average transaction size q/T, and column (8) reports the change in the num-
ber of transactions T. Column (9) presents the first-order approximation of scale-adjusted
pass-through computed as −γ× (coefficient from column 7), using γ = 0.29 from Section
4.2.

B.5 Decomposition of Aggregate Price Variation

We can run regressions, along the vein of the decomposition in Section 3, to understand
what correlates to aggregate relationship-level prices, as those studied by Alviarez et al.
(2023) and Kamal and Sundaram (2016):

log p̃i→j,v = θ log qi→j,v + FEi,v + FEj,v + ϵij. (72)

Table A.7 highlights these regressions in two forms. The first using raw price data and
the second using our residual price p̃, which controls for the transaction-level quantity
discount. Column (1) shows that with product and source fixed effects, the aggregate
quantity between a seller and buyer, accounts for 23% of the price variation, with an ag-
gregate elasticity θ = -0.22. Column (2) shows that accounting for transaction level quan-
tities implies that aggregate quantities only explain 5% of the price variation. However
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Table A.6: Monthly Aggregate Pass-Through, 2017-2018

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log p log p̃ log µc̃ log q̃ log pq log q log(q/T) log T l̂og p̃

log(1+Tariffs) 1.01 0.593 -0.417 0.427 -1.493 -2.502 -1.881 -0.621 0.540
(0.0376) (0.0149) (0.0149) (0.0280) (0.0395) (0.0548) (0.0472) (0.0229)

r2 0.908 0.878 0.878 0.902 0.87 0.9 0.892 0.904
r2 within 0.0003 0.0006 0.0006 0.0001 0.0006 0.0009 0.0007 0.0003

Fixed Effects Variety-Year-Month, Variety-Country Origin

Notes: This table reports aggregate tariff pass-through estimates at the product-origin-month level over
2017-2018. Column (1) shows the reduced-form pass-through of tariffs to observed unit values. Column
(2) reports pass-through to quantity-adjusted unit values p̃, constructed by netting out transaction-level
scale effects using the estimated γ from Section 4.2. Column (3) decomposes the scale-adjusted price into
the composite of markups and marginal costs µc̃, isolating the change in seller pricing behavior net of the
mechanical tariff effect. Column (4) reports the residual quantity composition effect q̃. Column (5) shows
the effect on total transaction values pq. Column (6) reports the quantity response. Column (7) shows
the change in average transaction size q/T. Column (8) reports the change in the number of transactions
T. Column (9) presents the first-order approximation of scale-adjusted pass-through computed as −γ×
(coefficient from column 7), using γ = 0.29 from Section 4.2. All specifications include product-time and
product-origin fixed effects. Standard errors are clustered at the product-origin level.

this accounting implicitly makes assumptions about the unique nature of a product.
Columns (3) and (4) include the most demanding set of fixed effects, buyers-variety

and seller-variety. Column (3) shows that there is a relatively significant correlation be-
tween raw prices and aggregate quantities, with θ = -.137, explaining 13.5% of the vari-
ation. However, when controlling for transaction level quantities in (4), there is an ex-
tremely small effect, with almost no relationship between the quantity bought and the
price paid.37

However, these regressions are purely a decomposition, they aren’t reflecting a supply
curve, but rather the equilibrium output of millions of relationships in the cross-section.
To do better, we turn to a first difference strategy in the main text, that exploits changes in
underlying demand to estimate a relationship level supply curve, both with and without
accounting for economies of scale in individual transactions.

37We can additionally run regressions on importer and exporter shares and volumes, as in section 3.
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Table A.7: Relationship-Level Cross Sectional Price Differences

(1) (2) (3) (4)
log p log p̃ log p log p̃

log q -0.221 -0.074 -0.136 -0.020
(0.002) (0.001) (0.003) (0.001)

r2 0.391 0.236 0.906 0.89
Within r2 0.223 0.052 0.135 0.006
Fixed Effects Country-HTS10 Buyers-HTS10

Seller-HTS10

Notes: See text for details.
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C Domestic Trade Data

C.1 CFS Data Descriptions

For domestic trade, we consider the U.S. Census and Department of Transportation Com-
modity Flow Survey (CFS), focusing on 2012. This survey asks US-based manufactur-
ing and wholesale establishments about their transactions, recovering the weight, value,
method of transport, and the final shipping destination. Products are classified by a 5-
digit Standard Classification of Trade Goods (SCTG) code. There are three limitations to
this data, compared to the import data. First, we do not observe the identity of the receiv-
ing firm, but rather only their zip-code or state, which we code as the final buyer (thus a
buyer is a product-location combination). Second, for goods that are not sold by weight,
we do not see a measure of quantity, as such, we drop SCTG codes for goods not sold by
weight.

This survey of approximately 100,000 establishments (out of 700,000 potential estab-
lishments) covers locations that originate 80% of domestic manufactured good shipping.
Only a subset of transactions are recorded to keep reporting requirements tractable, re-
sulting in about 5 million transactions in 2012. We decompose prices for 2012, but carry
out further analysis every 5 years from 1997 to 2017.

Table A.8: Variance Decomposition of Domestic Trade Data

Specification Variance Decomposition

Controls Fixed Effects Controls Fixed Effects Covariance Residual

1 log q 32.5% 67.5%
2 log q x Variety 37.6% 62.4%
3 Seller-Buyer-Variety 73.7% 26.4%
4 log q Seller-Buyer-Variety 18.6% 47.3% 12.0% 22.1%
5 log q x Variety Seller-Buyer-Variety 20.4% 45.6% 12.4% 21.6%

Notes: We decompose transaction-level price variation after demeaning log(price) by product code (SCTG
5-digit). Only products where quantities are regularly denominated in weight are included. Sellers are
designated at the establishment and product code level. Buyers are designated at the destination state and
product code level. For consistency, the sample is fixed to remain constant over the sample period. See the
text for full details and specification.

C.1.1 Decomposing Domestic Trade Prices

We conduct a similar exercise with the US domestic Commodity Flow Survey (CFS). The
data are limited in certain aspects, particularly because they represent a highly restricted

77



sample from the buyer’s perspective.38 We broadly find similar trends to the international
trade import data.39

Data on quantities is restricted to material sold by weight, as non-weight quantities
are not recorded (as in international trade). We subset analysis only to goods sold tra-
ditionally by weight. Unlike in US import data, data are not collected on the identity of
the buying firm, only the identity of the seller is known. We only know the address of
the firm receiving shipment. We use the ZIP code of the recipient firm as a proxy for the
buyer. Product codes are substantially more aggregated. A 5-digit SCTG code is largely
comparable to a 4-digit HTS import code or 4-digit HS trade code.

In Table A.8, Row (1) replicates the exercise to decompose the variance of prices on the
size of a transaction (all demeaned and residualized at the SCTG 5-digit level). Transac-
tions are identified with a seller, product code, shipment date and buying zip code tuple.

Specification (1) finds that 32.5% of all price variation is due to a log-linear quantity
relationship. Allowing this relationship to vary across SCTG 5-digit products increases
this to 37.6% of all variation. The share of prices explained by quantity is indeed a bit
lower than those in the international trade data, however that data has better measures of
product categories and direct measures of quantities. Regardless of the data generating
process, within tightly defined product groups, a simple log(q) explains between 30-40%
of all price variation.

Specifications (3)-(5) attempt to see if this relationship is purely reflective of the buyer-
seller pair, or if there is any explanatory power due to transaction-level quantities. Broadly,
as with international trade, the results are similar.

C.2 Supply Estimation: Domestic Data

We repeat a version of the supply isolation using the domestic shipment data from the
CFS. The available data make it hard to directly control for supply shocks, but an aspect
of the data collection process works in our favor. In particular, the government ques-
tionnaire recovers a sample of shipments, not throughout the year, but within a tightly
defined window (typically a week or so). This mechanically controls for supply-time
fixed effects. As such, all supply shocks (after controlling for the relationship), must dif-
ferentially affect some, but not all other customers. Our primary identification threat is
unobserved qualities across shipments.

As before, we create an instrumental variable that is correlated with a demand shock,
38This is important since many types of production function estimation assume away price variation in

input data.
39This analysis is replicable in public use data that aggregates regions and SCTG codes.
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but uncorrelated with the current supplier (for which we have implicitly a supplier-time
control). Following Equation 10, we create three instruments. The first looks at how
much of a product is bought from a firm by a destination state, excluding the focal order.
This naturally is at roughly the month level, as orders from firms are clustered due to
sampling. The second considers how much is bought by a destination state within a
month-product, excluding the focal transaction. The last, does the same, but excludes all
transactions from the original focal firm.

Table A.9 produces a version of Table 2-3 for our domestic data in 2012. Column
(1) illustrates in the simply demeaned data a correlation, where γ is equivalent to -0.3;
broadly in line with the import data. However, looking within a buyer-seller-product
relationship in column (2), the same γ is -0.23. Columns (3) and (4) repeat this exercise,
but allow γv to vary across each of the 5-digit SCTG products. Mean estimates of γv are
-0.295 and -.206, with relatively tight variances across different products.

Turning to our instrumentation strategy to control for unobserved product quality,
as well as the limited possibility of supplier shocks, columns (5)-(6) display the results.
Column (5) replicates column (2), but with the same sample as observations with our first
instrument. Column (6)-(8) show that all three instrumentation strategies yield strong
predictive first stages and have γv between -0.21 and -0.26.

Broadly, within-relationship inverse supply elasticities are around -0.28 in the trade
data and -0.24 in the domestic trade data. However, the goods traded are different and
product level comparisons may yield even more consistent estimates.

C.2.1 Aggregate Scale Economies Domestic Trade

There do not appear to be aggregate scale economies (or cross-sectional or time series
effects of changes in aggregate order volumes and indication of unilateral or bilateral
market power) in international imports once quantity discounts are controlled for. What
about domestic trade? We conduct the same exercise, first a decomposition, then a regres-
sion controlling for supply side effects with an instrument.

There are two downsides to the domestic trade data. First, it is not a time series,
severely limiting both controls and potential instruments. However, even in the cross-
section, we can control for relationship fixed effects. Furthermore, the domestic data has
one advantage over the trade data: for a single seller, we see a wider swath of buyers and
can directly control for some bilateral effects.

In Table A.10, columns (1) and (2), we show that while a substantial portion of the
variation in aggregate prices log p can be correlated with total volumes log q, once trans-
action level discounts are stripped out, there are no correlations. Columns (3) and (4) add
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Table A.9: Recovering Quantity Discounts: Domestic Data

(1) (2) (3) (4)

log p

log q -0.304 -0.23
(0.00146) (0.00174)

log q x SCTG -0.295 -0.206
[0.136] [0.0246]

r2 0.325 0.779 0.376 0.784
Within r2 0.325 0.159 D D
Fixed Effects
Relationship ✓ ✓

(5) (6) (7) (8)

log p

log q -0.22 -0.209 -0.256 -0.261
(0.00197) (0.00170) (0.00423) (0.00508)

r2 0.788 0.155 0.151 0.15
Within r2 0.155
Fixed Effects
Relationship ✓ ✓ ✓ ✓
First Stage F-Stat 74000 69000 11000
Instruments IV1 IV2 IV3

Notes: Round parenthesis represent standard deviations. Square brackets represent the variance across
SCTG 5-digit codes for estimates. The mean estimate is displayed over it. Demeaning refers to process of
regularizing all variables by product code (SCTG) fixed effects. Sellers are designated at the establishment
and product code level. Buyers are designated at the domestic destination state and product code level.
See the text for full details and specification. D denotes variables not yet disclosed from census. Standard
errors are clustered by the buyer-seller pair.

significant buyer-product and seller-product fixed effects and show that this relationship
is unchanged.

However, to show causality, we need a shifter of demand, not some potential bilateral
shifter of supply. Columns (5) and (6) implement a simplified version of the instrument
used in the import data, at the destination, how much overall demand exists, without
including the focal source. Essentially a location that buys lots of car parts will have
more demand for car parts, even excluding the focal source location. Further to control
for geographic proximity, we control for distance (as measured using road distance as
computed by the US Census and Department of Transportation).
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Without controlling for transaction level quantity discounts, scale is −.11. However,
controlling for transaction level quantity discounts, scale is = .02, close to constant returns
to scale.

Table A.10: Decomposing Relationship Prices - Domestic Trade

(1) (2) (3) (4) (5) (6)
log p log p̃ log p log p̃ log p log p̃

log q -0.15 0.0188 -0.15 0.0288 -0.112 0.024
(0.00607) (0.00634) (0.00609) (0.00628) (0.00605) (0.00609)

log(Distance) -0.0329 -0.0161 -0.0154 0.0139
(0.00310) (0.00280) (0.00353) (0.00384)

r2 0.823 0.947 0.86 0.957 0.112 0.12
Within r2 0.123 0.00219 0.12 0.00481
First Stage F-Stat 396.6 396.6

Fixed Effects Seller, SCTG5 Buyer-SCTG5, Seller-SCTG5
Instruments ✓ ✓

Notes: This comes from a regression of change in aggregates quantities on a measure of price. Odd columns
use aggregate prices. Even columns follow adjust each transaction’s price for the quantity sold, using the
aggregate relationship using γ to adjust p to recover the scale-free p̃. Columns (1) through (6) use fixed
effects in increasing order of stringency. The last two columns instrument for the change in quantity using
the shift-share instrument detailed in the text. Standard errors are clustered by SCTG 5-digit product.
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